
PayU Integration Document - Version 2.14

Page 1

Strictly Confidential

PayUbiz
Integration Document

9th Floor, Bestech Business Tower

Sector 48, Sohna Road

Gurgaon, 122002

India

T: 0124-6749078

F: 0124-6749101

PayU Integration Document - Version 2.14

Page 2

Table of Contents (Click on the topic for direct access)
OVERVIEW 3

PayU Payment Gateway 3

Payment Process Flow 4

SECTION I: WEBSITE INTEGRATION 4

Steps for Integration Process 5

Parameters to be posted by Merchant to PayU in Transaction Request 6

Seamless Integration – Parameters in Transaction Request 16

Additional Charges – Convenience Fee Model (To be used only if recommended by

Account Manager at PayU) 17

Method 1: Enabled from backend at PayU 17

Method 2: Merchant Calculates and Posts Additional Charges to PayU 18

Important Things to remember: Characters allowed for parameters 19

Formula for hash (checksum) before transaction 19

Formula for hash (checksum) after transaction 19

Hash (Checksum) Algorithm Example codes 19

For PHP 19

For .NET 20

For JSP 20

Response Parameters posted by PayU to Merchant in redirection 20

Sequence Diagram for Cardless EMI 25

Cardless EMI Additional Response(Server to Server) 25

Whitelisting Required 29

Data Sharing between PayU and Merchant for Cardless EMI 29

Enabling HDFC Debit Card, Bajaj Finserv, Axis Debit Card and Zest Money EMIs 31

Shopping Cart Integration Kits 32

Platform based Integration kits 33

SECTION II: WEB SERVICES – APIs 34

Web Service Request Format: 34

Web Service Response Format 35

LIST OF APIs AND THEIR DESCRIPTION 35

1) verify_payment 35

3) cancel_refund_transaction 38

4) check_action_status (1ST Usage) 40

5) check_action_status (2nd Usage) 41

6) getAllRefundsFromTxnIds 43

7) capture_transaction 44

PayU Integration Document - Version 2.14

Page 3

7) update_requests 45

8) cod_verify 46

9) cod_cancel 48

10) cod_settled 49

11) get_TDR 50

12) udf_update 51

13) create_invoice 52

14) expire_invoice 53

15) check_offer_status (1st Usage) 54

16) check_offer_status (2nd Usage) 55

17) getNetbankingStatus 57

18) getIssuingBankStatus 58

20) get_Transaction_Details 60

21) get_transaction_info 62

22) check_isDomestic 64

23) get_settlement_details 65

24) get_merchant_ibibo_codes 67

25) eligibleBinsForEMI 68

26) get_user_cards 69

27) save_user_card 70

29) edit_user_card 71

30) delete_user_card 71

OVERVIEW

This document describes the steps for technical integration process between merchant

website and PayU Payment Gateway for enabling online transactions. This document is

covered in two sections. Section I covers website integration and Section II covers APIs

provided to the merchants.

PayU Payment Gateway

PayU offers electronic payment services to merchant website through its partnerships with

various banks and payment instrument companies. Through PayU, the customers would be

able to make electronic payments through a variety of modes which are mentioned below:
● Credit cards

● Debit cards

● Online net banking accounts

● EMI payments

● Cash Cards

● Email Invoicing

PayU Integration Document - Version 2.14

Page 4

● IVR

● Cash on Delivery (COD)

● Cardless EMI

● Pre-Auth and Capture

PayU also offers an online interface (known as PayU Dashboard) where the merchant has

access to various features like viewing all the transaction details, settlement reports,

analytical reports etc. Through this interface, the merchant can also execute actions like

capturing, cancelling and refunding the transactions. This online interface can be accessed

through https://www.payubiz.in by using the username and password provided to you.

Payment Process Flow
The following diagram explains how the customer makes the payment and how the process

flows:

SECTION I: WEBSITE INTEGRATION

The merchant can integrate with PayU by using one of the below methods:

1) Non-Seamless Integration – In this mode during the transaction, the customer

would be redirected from merchant website to PayU payment page. On the PayU

payment page, he would need to select the payment option and enter the respective

card details. After this, PayU would re-direct the customer to the desired payment

option webpage for further authentication.

2) Seamless Integration - In this mode, the merchant needs to collect the customer

card details on their own website and post them to PayU. Here, the customer would

not be stopped at PayU payment page at all, as the payment option and card details

are already received from the merchant. The merchant must be PCI-DSS certified in

this case. For further information on PCI-DSS certification please contact your

Account Manager at PayU.

https://www.payubiz.in/

PayU Integration Document - Version 2.14

Page 5

Also, the merchant website can be based either on a shopping cart or can be developed by

the merchant (not based upon any shopping cart). Based on the type (out of these two),

PayU would provide integration kit (code) to the merchant which they needs to incorporate at

their end. The list of Integration kits supported by PayU at present is mentioned in later

sections of the document.

Steps for Integration Process
The steps for integrating with PayU can technically be described as below:

1) To start off the integration process, you would be provided a test setup by PayU

where you would be given a test merchant account and test credit card credentials to

have a first-hand experience of the overall transaction flow. Here, you need to make

the transaction request on our test server (and not the production server). Once

your testing is complete, then only you will be ready to move to the PayU production

server.

2) To initiate a transaction, the merchant needs to generate a POST REQUEST - which

must consist of mandatory and optional parameters mentioned in the later section.

This POST REQUEST needs to be hit on the below mentioned PayU URLs:

For PayU Test Server:

POST URL: https://test.payu.in/_payment

For PayU Production (LIVE) Server:

POST URL: https://secure.payu.in/_payment

3) In the merchant initiated POST REQUEST, one of the mandatory parameters is

named as hash. The details of this hash parameter have been covered in the later

section. But it is absolutely critical for the merchant to calculate the hash correctly

and post to us in the request.

4) When the transaction POST REQUEST hits the PayU server, a new transaction entry

is created in the PayU Database. To identify each new transaction in the PayU

Database, a unique identifier is created every time at PayU’s end. This identifier is

known as the PayU ID (or MihPayID).

5) With the POST REQUEST, customer would be re-directed to PayU’s payment page.

Customer now selects the particular payment option on PayU’s page (Credit

Card/Debit Card/Net Banking etc) and clicks on ‘Pay Now’. PayU re-directs the

customer to the chosen bank. The customer goes through the necessary

authorization/authentication process ast bank’s login page, and the bank gives the

success/failure response back to PayU.

6) PayU marks the transaction status on the basis of response received from Bank. PayU

provides the final transaction response string to the merchant through a POST

RESPONSE. The parameters in this response are covered in the subsequent sections.

7) In the POST RESPONSE sent by PayU, you would receive the final status of the

transaction. You will receive the hash parameter here also. Similar to step 3, it is

https://test.payu.in/_payment

PayU Integration Document - Version 2.14

Page 6

absolutely crucial to verify this hash value at your end and then only accept/reject the

invoice order. This is done to strictly avoid any tampering attempt by the user.

DISCLAIMER:
1. Test URL: The Test URL is provided to PayU merchants to test the integration of

their server with that of PayU or Bank. It is understood that since this is merely a Test

URL, the Merchant should not treat any transactions done on this Test server as live

and should not deliver the products/services with respect to any such test transactions

even in the case your server receive a successful transaction confirmation from

PayU/Bank.

2. Merchants are herein forth requested to set up required control checks on their

(merchant) systems/servers to ensure that only those transactions should get routed to

the PayU test server which are initiated with sole intention of test the environment.

Parameters to be posted by Merchant to PayU in Transaction Request

Sr.

No

Variable Description

PayU Integration Document - Version 2.14

Page 7

1) key (Mandatory) This parameter is the unique Merchant Key provided by PayU for your

merchant account. The Merchant Key acts as the unique identifier (primary key)

to identify a particular Merchant Account in our database. While posting the

data to us, you need to put this Merchant Key value for you merchant account in

this parameter.

Also, please note that during integration with PayU, you would need to first

integrate with our Test Server. PayU would be providing you the necessary

Merchant Key for test server. Please do not use your live account’s merchant

key here. It would not work.

Once testing is done, you are ready to move to live server. Here, you would

need to replace the test Merchant Key with Live Merchant Key. This is a critical

step for successfully moving to live PayU server.

Example: C0Ds8q

2) txnid (Mandatory) This parameter is known as Transaction ID (or Order ID). It is the order

reference number generated at your (Merchant’s) end. It is an identifier which

you (merchant) would use to track a particular order. If a transaction using a

particular transaction ID has already been successful at PayU, the usage of same

Transaction ID again would fail. Hence, it is essential that you post us a unique

transaction ID for every new transaction.

(Please make sure that the transaction ID being sent to us hasn’t been successful

earlier. In case of this duplication, the customer would get an error of ‘duplicate

Order ID’).

Data Type – Varchar

Character Limit – 25 characters
Example: fd3e847h2

3) amount (Mandatory) This parameter should contain the payment amount of the particular transaction.
This amount must be greater than Rs. 8000 for Cardless EMI option.

Note: Please type-cast the amount to float type

Example: 10.00

4) productinfo

(Mandatory)
This parameter should contain a brief product description. It should be a string

describing the product (The description type is entirely your choice).
Data type - Varchar

Character Limit – 100 characters

Example: tshirt100

5) firstname

(Mandatory)

Self-Explanatory (Must contain the first name of the customer)

Data Type – Varchar

Character Limit – 60 characters
Example: Ankit

6) email (Mandatory) Self-explanatory (Must contain the email of the customer)

Data type – Varchar

Character Limit – 50
Example: ankitverma@gmail.com

This information is helpful when it comes to issues related to fraud detection

and chargebacks. Hence, it is must to provide the correct information

7) phone (Mandatory) Self-explanatory (Must contain the phone number of the customer)

Data type – Varchar
Character Limit – 50 (numeric value only)

mailto:mohitjain@gmail.com

PayU Integration Document - Version 2.14

Page 8

 Example:9843176540

This information is helpful when it comes to issues related to fraud detection
and chargebacks. Hence, it is must to provide the correct information

8) lastname

(Mandatory)

Self-Explanatory (only alphabets a-z are allowed). (Must contain the last name

of the customer).

Data Type – Varchar

Character Limit – 20 characters

Example: Verma

9) address1 Self-Explanatory. This parameter is mandatory for Cardless EMI option. This
will be used for billing address.

Data Type – Varchar

Character Limit – 100

Characters allowed : A to Z, a to z, 0 to 9, @, - (Minus), _ (Underscore), /
(Backslash), (Space), (Dot)

10) address2 Self-explanatory.

Data Type – Varchar

Character Limit – 100
(Allowed characters are same as for address1 parameter)

11) city Self-explanatory. This parameter is mandatory for Cardless EMI option. This
will be used for billing address.

Data type – Varchar

Character Limit – 50
(Allowed characters are same as for address1 parameter)

12) state Self-explanatory. This parameter is mandatory for Cardless EMI option. This

will be used for billing address.

Data type – Varchar

Character Limit – 50
(Allowed characters are same as in address parameter)

13) country Self-explanatory. This parameter is mandatory for Cardless EMI option. This
will be used for billing address.

Data type – Varchar
Character Limit – 50
(Allowed characters are same as in address parameter)

14) zipcode Self-explanatory. This parameter is mandatory for Cardless EMI option. This

will be used for billing address.

Data type – Varchar

Character Limit – 20
(Only numeric value allowed)

15) udf1 User defined field 1 – This parameter has been made for you to keep any

information corresponding to the transaction, which may be useful for you to

keep in the database. UDF1-UDF5 fields are for this purpose only. It’s

completely for your usage and you can post any string value in this parameter.

udf1-udf5 are optional parameters and you may use them only if needed

Data type – Varchar
Character Limit – 255

PayU Integration Document - Version 2.14

Page 9

16) udf2 User defined field 2 – Same description as UDF1

Data type – Varchar

Character Limit – 255

17) udf3 User defined field 3 – Same description as UDF1

Data type – Varchar

Character Limit – 255

18) udf4 User defined field 4 – Same description as UDF1

Data type – Varchar

Character Limit – 255

19) udf5 User defined field 5 – Same description as UDF1

Data type – Varchar

Character Limit – 255

20) surl (Mandatory) Success URL - This parameter must contain the URL on which PayU will

redirect the final response if the transaction is successful. The response handling

can then be done by you after redirection to this URL

21) furl (Mandatory) Failure URL - This parameter must contain the URL on which PayU will

redirect the final response if the transaction is failed. The response handling can

then be done by you after redirection to this URL

22) curl Cancel URL - This parameter should contain the URL on which PayU will

redirect the response if the transaction is cancelled by the customer on PayU

page. The response handling can then be done by you after redirection to this

URL

23) hash (Checksum)

(Mandatory)

Hash is a crucial parameter – used specifically to avoid any tampering during

the transaction. There are two different methods to calculate hash. Please follow

method 1 only. Method 2 is just there for the documentation and is not to be

used.

Method 1 - This is the simplest way of calculating the hash value. Here, please

make sure that the api_version parameter is NOT POSTED from your end.

For hash calculation, you need to generate a string using certain parameters and

apply the sha512 algorithm on this string. Please note that you have to use pipe

(|) character in between these parameters as mentioned below. The parameter

order is mentioned below:

sha512(key|txnid|amount|productinfo|firstname|email|udf1|udf2|udf3|udf4|u

df5||||||SALT)

All these parameters (and their descriptions) have already been mentioned

earlier in this table. Here, SALT (to be provided by PayU), key, txnid, amount,

productinfo, firstname, email are mandatory parameters and hence can’t be

empty in hash calculation above. But, udf1-udf5 are optional and hence you

need to calculate the hash based upon the fact that whether you are posting a

particular udf or not. For example, if you are NOT posting udf1. Then, in the

hash calculation, udf1 field will be left empty. Following examples will clarify

various scenarios of hash calculation:

Case 1: If all the udf parameters (udf1-udf5) are posted by the merchant. Then,

hash=sha512(key|txnid|amount|productinfo|firstname|email|udf1|udf2|udf3|

udf4|udf5||||||SALT)

PayU Integration Document - Version 2.14

Page 10

 Case 2: If only some of the udf parameters are posted and others are not. For
example, if udf2 and udf4 are posted and udf1, udf3, udf5 are not. Then,
hash=sha512(key|txnid|amount|productinfo|firstname|email||udf2||udf4|||||||S

ALT)

Case 3: If NONE of the udf parameters (udf1-udf5) are posted. Then,

hash=sha512(key|txnid|amount|productinfo|firstname|email|||||||||||SALT)

Example: If key=C0Dr8m, txnid=12345, amount=10, productinfo=Shopping,

firstname=Test, email=test@test.com, udf2=abc, udf4=15, SALT=3sf0jURk

and udf1, udf3, udf5 are not posted. Then, hash would be calculated as Case 2

above:

sha512(C0Dr8m|12345|10|Shopping|Test|test@test.com||abc||15|||||||3sf0jUR

k)

(This value comes out to be
ffcdbf04fa5beefdcc2dd476c18bc410f02b3968e7f4f54e8f43f1e1a310bb32e3
b4dec9305232bb89db5b1d0c009a53bcace6f4bd8ec2f695baf3d43ba730ce)

IMPORTANT: For details related to hash at the time of post back from PayU to

the merchant, please refer to later section. This is also absolutely mandatory to

avoid any tampering.

Method 2- Second method for hash calculation (Don’t use this method. It is

only for internal documentation).
Here, parameter api_version should be equal to 2.

hash = sha512(key|txnid|amount|offer_key|api_version|SALT)

Method 3 - Third method for hash calculation - used specifically for Ola

Postpaid mode transaction.

Here, parameter api_version must be equal to 4.
hash =

sha512(key|txnid|amount|productinfo|firstname|email|udf1|udf2|udf3|udf4|u

df5|udf6|udf7|udf8|udf9|udf10|phone)

24) pg This parameter signifies the payment category (tab) that you want the customer

to see by default on the PayU page. Hence if PG=’NB’, then after redirection to

PayU’s payment page, the Net Banking option would be opened by default.

(PG parameter may take different values like : NB for Net Banking tab, CC for

Credit Card tab, DC for Debit Card tab, CASH for Cash Card tab and EMI for

EMI tab)

Note: PG = CC, i.e. Credit Card tab is recommended. If PG is left empty, CC

will be taken as default.

25) codurl Cash on delivery URL – This parameter is used when a transaction attempt

fails. In this case, if retries have been enabled for you (done by PayU for your

merchant account), our PayU page is shown (to provide another attempt to

customer to complete the transaction) with the ‘failed transaction message’ to

the customer and also ‘Pay by COD’ option. To handle this ‘Pay by COD’

option, you can fill the COD URL parameter with a URL which we will redirect

to, when the customer selects this option. This way, you can then provide the

customer another attempt at the transaction through this URL.

27) drop_category This parameter is used to customize the payment options for each individual

transaction. For example, if we consider the categories Credit Card, Debit Card

and Net Banking for a merchant. If there are 30 net banking options available

and the merchant wants to drop 2 of those net banking options (i.e. do not

mailto:test@test.com
mailto:test@test.com

PayU Integration Document - Version 2.14

Page 11

 display those 2 options on PayU page), then drop_category parameter can be
used effectively. Below table denotes example of category and sub-categories at
PayU

Category Sub-category

Credit Card MasterCard, Amex, Diners etc

Debit Card Visa, Mastercard, Maestro etc

Net Banking SBI Net Banking, HDFC Net Banking etc

EMI CITI 3 Months EMI, HDFC 6 Months EMI etc

Cash Card AirtelMoney, YPay, ITZ Cash card etc

Now, to drop the whole category, please use the following values:

Category Value of 'drop_category' parameter

Credit Card CC

Debit Card DC

Net Banking NB

EMI EMI

Cash Card CASH

To drop sub-categories, please use the respective bank codes for them. Please

contact PayU to get the respective bank codes. Also note that the delimiter for

categories is comma (,) character and for sub-categories it is the pipe (|)

character. Examples for usage:

drop_category - DC|VISA|MAST, NB|ICIB : Here, for debit card category,

only Visa and Master Card options would be dropped (and hence not displayed

on the PayU page). In Net Banking option, only ICICI Net Banking would be

dropped. All other active payment options would be displayed.

drop_category - CC|AMEX, DC|VISA, EMI|EMI6 : Here, for credit card

category, only AMEX option would be dropped (and hence not displayed). In

debit card category, only VISA option would be dropped. And in EMI category,

only HDFC 6 months EMI option (bank code – EMI6) would be dropped. All

the other active payment options would be displayed.

Note: Please make sure to use this parameter only after testing properly as an

incorrect string will lead to undesirable payment options being displayed.

PayU Integration Document - Version 2.14

Page 12

28) enforce_paymethod This parameter allows you to customize the payment options for each individual

transaction. For example, if we consider the categories Credit Card, Debit Card

and Net Banking. If the merchant wants to display only 4 debit card options and

only 2 Net Banking options for a transaction A and wants to display only 2 debit

card option and 5 Net Banking options for another transaction B, the

customization is needed and this parameter (enforce_paymethod) provides

exactly that feature.

The merchant needs to put the necessary payment options in this parameter and

post it to us at the time of transaction. All the categories and subcategories have

specific values which need to be put in this string. The categories/subcategories
are as follows:

Category Sub-category

Credit Card MasterCard, Amex, Diners etc

Debit Card Visa, Mastercard, Maestro etc

Net Banking SBI Net Banking, HDFC Net Banking etc

EMI CITI 3 Months EMI, HDFC 6 Months EMI etc

Cash Card AirtelMoney, YPay, ITZ Cash card etc

Now, to enforce complete categories, please use the following values:

Category Value of enforced_paymethod

Credit Card creditcard

Debit Card debitcard

Net Banking netbanking

EMI emi

Cash Card cashcard

To enforce sub-categories, please use the respective bank codes for them. Please

contact PayU to get the respective bank codes. Please note that the delimiter is

pipe (|) character here. Examples:

creditcard|debitcard|HDFB|AXIB – Here, all the credit card and debit card

options would be displayed (as the whole category is enforced). In Net Banking

category, only HDFC and AXIS Net Banking would be displayed. Rest of the

categories would not be displayed at all (EMI, Cash card etc – as they are not

being mentioned in the string).

creditcard|VISA|SMAE|netbanking|EMI6|EMI9|cashcard – Here, all the

credit card options, net banking options and cash card options would be

displayed (as the whole category is enforced for these). In Debit card category,

Visa and SBI Maestro payment options would be displayed (as bank codes for

only these options are mentioned in the string). In EMI category, only HDFC

EMI (for 6 and 9 months) would be displayed.

Note: Please make sure to use this parameter only after testing properly as an

incorrect string will lead to undesirable payment options being displayed.

PayU Integration Document - Version 2.14

Page 13

29) custom_note This parameter is useful when you want to display a message string on the PayU

Payment page. For example, if for a particular product X, you want your

customer to know that an extra amount of Rs 100 would be charged afterwards,

you can show the corresponding message on payment page. For this, you need

to post that message in this parameter – custom_note. The note would be

displayed just below the payment tabs (Credit Card/Debit Cards/Net Banking)

For Example:

custom_note = You will be charged an extra amount of Rs 100 on this

transaction

Characters allowed: A to Z, a to z, 0 to 9, % (percentage), , (comma), .
(decimal), ' (apostrophe)

30) note_category This parameter gives you an option of showing the message string passed in

custom_note parameter for only the selected Payment categories. Hence, this

parameter should contain the comma separated list of the payment options for

which the custom_note will appear.

For example: note_category = CC,NB will show the custom_note for Credit

Card & Net banking only

31) api_version Please don’t use this parameter while posting the data. This is a deprecated
parameter.

32) shipping_firstname This parameter has to used in case of COD (Cash on Delivery) or Cardless

EMI Only. Use this for shipping firstname only and this is mandatory for

Cardless EMI.

Self-Explanatory (Constraints same as firstname parameter). If this parameter is

posted, the corresponding value would be filled up automatically in the form
under COD tab on PayU payment page

33) shipping_lastname This parameter has to used in case of COD (Cash on Delivery) or Cardless

EMI Only. Use this for shipping lastname only and this is mandatory for

Cardless EMI.

Self-Explanatory (Constraints same as lastname parameter). If this parameter is

posted, the corresponding value would be filled up automatically in the form
under COD tab on PayU payment page

34) shipping_address1 This parameter has to used in case of COD (Cash on Delivery) or Cardless

EMI Only. Use this for address only and this is mandatory for Cardless

EMI.

Self-Explanatory (Constraints same as address1 parameter). If this parameter is

posted, the corresponding value would be filled up automatically in the form
under COD tab on PayU payment page

35) shipping_address2 This parameter has to used in case of COD (Cash on Delivery) Only.

Self-Explanatory (Constraints same as address2 parameter). If this parameter is
posted, the corresponding value would be filled up automatically in the form
under COD tab on PayU payment page

36) shipping_city This parameter has to used in case of COD (Cash on Delivery) or Cardless

EMI Only. Use this for shipping_city only and this is mandatory for

Cardless EMI.

Self-Explanatory (Constraints same as city parameter). If this parameter is
posted, the corresponding value would be filled up automatically in the form
under COD tab on PayU payment page

37) shipping_state This parameter has to used in case of COD (Cash on Delivery) or Cardless

EMI Only. Use this for shipping_state only and this is mandatory for

Cardless EMI.
Self-Explanatory (Constraints same as state parameter). If this parameter is

PayU Integration Document - Version 2.14

Page 14

 posted, the corresponding value would be filled up automatically in the form
under COD tab on PayU payment page

38) shipping_country This parameter has to used in case of COD (Cash on Delivery) or Cardless

EMI Only. Use this for shipping_country only and this is mandatory for

Cardless EMI.

Self-Explanatory (constraints same as country parameter). If this parameter is
posted, the corresponding value would be filled up automatically in the form
under COD tab on PayU payment page

39) shipping_zipcode This parameter has to used in case of COD (Cash on Delivery) or Cardless

EMI Only. Use this for firstname only and this is mandatory for Cardless

EMI.
Self-Explanatory (constraints same as zipcode parameter). If this parameter is

posted, the corresponding value would be filled up automatically in the form
under COD tab on PayU payment page

40) shipping_phone This parameter has to used in case of COD (Cash on Delivery) or Cardless

EMI Only. Use this for firstname only and this is mandatory for Cardless

EMI.

Self-Explanatory (constraints same as phone parameter). If this parameter is
posted, the corresponding value would be filled up automatically in the form
under COD tab on PayU payment page

41) offer_key This parameter is useful when the merchant wants to give the customer a

discount offer on certain transactions based upon a pre-defined combination.

This combination can be based upon payment options/bins etc. For each new

offer created, a unique offer_key is generated. At the time of a transaction, this

offer_key needs to be posted by the merchant.

42) partner_hold_time This parameter is useful when merchants wants to provide hold time of the

product in case of Cardless EMI option. Hold time defines the time until the

time for which merchant can hold the current basket until the merchant receives

the final success/failure status from PayU. Default partner_hold_time for all

transactions can be defined for the merchant by reaching out to integration team

at payu. Otherwise, it will be considered 15 days.

After transaction initiation, transaction for Cardless EMI will expire after

partner_hold_time value and will be marked as failed.
This value should be in minutes. E.g if partner hold time is 3 days, then value
will be 4320(3*24*60)

43) Items Array of items in the basket

Array [

Uuid – string - Identifier of the item
Name – string - Item name[Required]

Unit_price – Decimal[decimal(18,2)] – Price in rupees[Required]
Sku – string - Stock keeping unit (article unique identifier)

Category – string - Item Category

Manufacturer – string - Item manufacturer

Quantity – Integer[int64] – Quantity of itemp[Required]
Img – string – Link to item avatar on Picture

]

“items" as a json of array of items (a json string). As an example,

items = [{“uuid”=“2273”, “name”="Sony Xperia XZ1 Dual (Black)”,
“unit_price”=“42990”, “manufacturer”=“Sony”, “quantity”=“1”,
“img”="https://www.payu.com/uploads/sony-xperia-xz1-black-1-
12753.jpg”}]

https://www.payu.com/uploads/sony-xperia-xz1-black-1-12753.jpg
https://www.payu.com/uploads/sony-xperia-xz1-black-1-12753.jpg

PayU Integration Document - Version 2.14

Page 15

44) Birthday string <date>

Customer birthday in format YYYY-MM-DD

e.g. – 1990-01-17

45) Gender String

e.g – MALE, FEMALE

46) Ipurl In progress URL - This parameter must contain the URL on which PayU will

redirect the customer if the transaction is in progress and needs some work from

the backend. The response handling can then be done by the merchant after

redirection to this URL. This is required for Cardless EMI option

47) pre_authorize This parameter needs to be sent in the request only if the transaction is intended

on auth-capture model. This means the transaction amount would not actually

debit, but it would be blocked. Its value should be 1.

Please ignore this flag if the transaction is not on auth-capture model.

Auth-capture model only works on credit cards (transactions will fail with debit
cards for auth-capture model)

48) transactionContext This is a "PhonePe Switch” specific parameter, Its value will be provided by
PhonePe to merchant and merchant post this parameter in the transaction
request to PayU. Other parameter that needs to be passed with it are “pg”:
CASH and “bankcode”: PPINAPP.

Table 1: Post Parameters from Merchant to PayU

PayU Integration Document - Version 2.14

Page 16

For your reference, please find sample code below which shows the basic set of parameters

being posted. Please execute this piece of code in browser to observe the POST request being

re-directed to PayU page and then you can form the complete transaction request in your

code base (with the mandatory and optional parameters)

<html>

<head>

</head>

<body>

<form action='https://test.payu.in/_payment' method='post'>

<input type="hidden" name="firstname" value="Vikas Kumar" />

<input type="hidden" name="lastname" value="" />

<input type="hidden" name="surl" value="https://www.google.com" />

<input type="hidden" name="phone" value="9999999999" />

http://www.google.com/

PayU Integration Document - Version 2.14

Page 17

Seamless Integration – Parameters in Transaction Request

For seamless mode, 8 extra parameters are required in the transaction Post Request

from your end – along with the parameters mentioned in the above table. These are

mentioned below:

S No Variable Description

1) pg

(Mandatory)

This parameter is the same as the one mentioned in the POST Parameters
mentioned above. It must be set as the payment category.

Please set its value to ‘NB’ for Net Banking , ‘CC’ for Credit Card , ‘DC’ for
Debit Card , ‘CASH’ for Cash Card and ‘EMI’ for EMI, ‘CLEMI’ for
Cardless EMI

2) bankcode

(Mandatory)

Each payment option is identified with a unique bank code at PayU. You

would need to post this parameter with the corresponding payment option’s

bankcode value in it.

For example, for ICICI Net Banking, the value of bankcode parameter value
should be ICIB. For detailed list of bank codes, please contact PayU team

PayU Integration Document - Version 2.14

Page 18

3) ccnum
(Mandatory)

This parameter must contain the card (credit/debit) number entered by the
customer for the transaction.

4) ccname
(Mandatory)

This parameter must contain the name on card – as entered by the customer
for the transaction.

5) ccvv
(Mandatory)

This parameter must contain the cvv number of the card – as entered by the
customer for the transaction.

6) ccexpmon
(Mandatory)

This parameter must contain the card’s expiry month - as entered by the
customer for the transaction. Please make sure that this is always in 2 digits.
For months 1-9, this parameter must be appended with 0 – like 01, 02…09.
For months 10-12, this parameter must not be appended – It should be 10,
11
and 12 respectively.

7) ccexpyr

(Mandatory)

The customer must contain the card’s expiry year – as entered by the
customer for the transaction. It must be of 4 digits. For example - 2017, 2029
etc.

8) Consent_shared

(Mandatory)

This is applicable for Cardless EMI transactions only. Values can be 0 or 1
based on whether the merchant has taken customer’s consent to share data or
not.

Table 2: Additional Parameters for Seamless Mode

Additional Charges – Convenience Fee Model (To be used only if

recommended by Account Manager at PayU)

There are 2 different methods to implement Additional Charges on PayU.

Method 1: Enabled from backend at PayU

The merchant would be posting the transaction amount of the product in the transaction

request.

1) Once the customer lands on PayU payment page and clicks on 'Pay Now' option,

the additional amount would be added to the amount of the product by PayU (based

upon the TDR values) and the total amount would be passed on to the bank’s page

while re-directing.

2) After PayU receives the status of transaction from the bank, it sends the response of

back to the merchant. In this response, the amount and additional amount can be

differentiated with the below parameters.

PayU Integration Document - Version 2.14

Page 19

● Original Transaction Amount - amount

● Additional Amount - additionalCharges

3) Once you receive the response from PayU, you need to check for reverse hash. If you

are verifying the reverse hash at your end (which is strictly recommended to avoid

any tamper cases), its formula will also change in case additionalCharges value is

sent.

Here, if the additionalCharges parameter is posted in the transaction response, then

hash formula is:

sha512(additionalCharges|SALT|status||||||udf5|udf4|udf3|udf2|udf1|email|firstna

me|productinfo|amount|txnid|key)

4) If additionalCharges parameter is not posted in the transaction response, then hash

formula is the generic reverse hash formula:

sha512(SALT|status||||||udf5|udf4|udf3|udf2|udf1|email|firstname|productinfo|am

ount|txnid|key)

Method 2: Merchant Calculates and Posts Additional Charges to PayU

1) The merchant would be posting both the transaction amount and additional charges in

the transaction request. The parameters used for these are amount and

additional_charges respectively. The way to pass the additional_charges parameter is

as below:

value>

<bankcode1> :< additional charge value>, < bankcode2> :< additional charge

Example: CC:12,AMEX:19,SBIB:98,DINR:2,DC:25,NB:55

2) In this method of applying additional charges, hash sequence would be affected for

both Pre-Transaction and Post-Transaction.
Pre-Transaction hash sequence:

Merchant needs to form the below hash sequence before posting the transaction to

PayU:

sha512(key|txnid|amount|productinfo|firstname|email|udf1|udf2|udf3|udf4|udf5||||

||SALT|additional_charges)

Where additional_charges value would be same as the value posted in transaction

request. For example, CC:12,AMEX:19,SBIB:98,DINR:2,DC:25,NB:55

3) Now, once the transaction request hits PayU server and re-direction happens, the

customer lands upon PayU payment page. Here, depending on the payment option

selection by the customer, the additional charge value would be added to transaction

amount. For example, for the above example, if the customer selects Credit Card, Rs

12 would be added to the transaction amount. If the customer selects AMEX option,

Rs 19 would be added to the transaction amount. For SBI Net Banking, Rs 98 would

be added to the transaction amount and so on. Please note that the additional charges

would be added only once the customer clicks on ‘Pay Now’ option.

4) When PayU receives the response from Bank, a POST Response is sent to the

merchant. Here also, the hash sequence needs to be changed.

Post-Transaction hash sequence:

Merchant needs to form the below hash sequence and verify it with the hash sent by

PayU in the Post Response:

PayU Integration Document - Version 2.14

Page 20

sha512(additionalCharges|SALT|status||||||udf5|udf4|udf3|udf2|udf1|email|firstna

me|productinfo|amount|txnid|key)

Where, additionalCharges value must be same as the value Posted from PayU to the

merchant in the response.

5) This hash value must be compared with the hash value posted by PayU to the

merchant. If both match, then only the order should be processed. If they don’t match,

then the transaction has been tampered with by the user and hence should not be

processed further.

Important Things to remember: Characters allowed for parameters

● For parameters address1, address2, city, state, country, product info, email, and phone

following characters are allowed:

● Characters: A to Z, a to z, 0 to 9

● -(Minus)

● _ (Underscore)

● @ (At the Rate)

● / (Slash)

● (Space)

● . (Dot)

If the merchant sends any other special characters then they will be automatically removed.

The address parameter will consider only first 100 characters.

Formula for hash (checksum) before transaction
This has already been covered in the description of hash in the table containing the POST

Parameters above.

Formula for hash (checksum) after transaction
This time the variables are in reverse order and status variable is added between salt and

udf1.

sha512(SALT|status||||||udf5|udf4|udf3|udf2|udf1|email|firstname|productinfo|amount|tx

nid|key)

It is absolutely mandatory that the hash (or checksum) is computed again after

you receive response from PayU and compare it with post back parameters below. This

will protect you from any tampering by the user and help in ensuring safe and secure

transaction experience.

Hash (Checksum) Algorithm Example codes
The Checksum algorithm used is SHA512 which is globally well known algorithm. To need

help with implementation, feel free to call us, mail us or use Google to find the desired

function library for your implementation. Some example codes are also mentioned below:

For PHP

Example code:

$output = hash ("sha512", $text);

PayU Integration Document - Version 2.14

Page 21

For .NET

Link: http://msdn.microsoft.com/en- us/library/system.security.cryptography.sha512.aspx

Example code:

byte[] data = new byte[DATA_SIZE];

byte[] result;

SHA512 shaM = new SHA512Managed();

result = shaM.ComputeHash(data);

For JSP

Example code:

import java.io.FileInputStream;

import java.security.MessageDigest;

public class SHACheckSumExample

{
public static void main(String[] args)throws Exception

{

MessageDigest md = MessageDigest.getInstance("SHA-512");

FileInputStream fis = new
FileInputStream("c:\\loging.log"); byte[] dataBytes = new

byte[1024]; int nread = 0;

while ((nread =

fis.read(dataBytes)) != -1) {

md.update(dataBytes, 0, nread); };

byte[] mdbytes = md.digest();

//convert the byte to hex format method

StringBuffer sb = new StringBuffer();
for (int i = 0; i < mdbytes.length; i++)

{

sb.append(Integer.toString((mdbytes[i] & 0xff) + 0x100,

16).substring(1));
}

System.out.println("Hex format : " + sb.toString());

//convert the byte to hex format method 2

StringBuffer hexString = new StringBuffer();

 for (int i=0;i<mdbytes.length;i++)
hexString.append(Integer.toHexString(0xFF

&

mdbytes[i])); }

 System.out.println("Hex format : " +
hexString.toString()); }

Response Parameters posted by PayU to Merchant in redirection

Sr.No Variable Name Description

http://msdn.microsoft.com/en-%20us/library/system.security.cryptography.sha512.aspx

PayU Integration Document - Version 2.14

Page 22

1 mihpayid It is a unique reference number created for each transaction at PayU’s
end. For every new transaction request that hits PayU’s server (coming
from any of our merchants), a unique reference ID is created and it is
known as mihpayid (or PayU ID)

2 mode This parameter describes the payment category by which the
transaction was completed/attempted by the customer. The values are
mentioned below:

Category used by Customer Value of Mode Parameter

Credit Card CC

Debit Card DC

NetBanking NB

Cash Card CASH

EMI EMI

IVR IVR

Cash On Delivery COD

Cardless EMI CLEMI

3 status This parameter gives the status of the transaction. Hence, the value of

this parameter depends on whether the transaction was successful or

not. You must map the order status using this parameter only. The

values are as below:

If the transaction is successful, the value of ‘status’ parameter would
be ‘success’.

The value of ‘status’ as ‘failure’ or ‘pending’ must be treated as a

failed transaction only.

4 key This parameter would contain the merchant key for the merchant’s

account at PayU. It would be the same as the key used while the

transaction request is being posted from merchant’s end to PayU.

5 txnid This parameter would contain the transaction ID value posted by the
merchant during the transaction request.

6 amount This parameter would contain the original amount which was sent in
the transaction request by the merchant.

7 discount This parameter would contain the discount given to user - based on the
type of offer applied by the merchant.

8 offer This parameter would contain the offer key which was sent in the
transaction request by the merchant.

9 productinfo This parameter would contain the same value of productinfo which
was sent in the transaction request from merchant’s end to PayU

10 firstname This parameter would contain the same value of firstname which was
sent in the transaction request from merchant’s end to PayU

PayU Integration Document - Version 2.14

Page 23

11 lastname This parameter would contain the same value of lastname which was
sent in the transaction request from merchant’s end to PayU

12 address1 This parameter would contain the same value of address1 which was
sent in the transaction request from merchant’s end to PayU

13 address2 This parameter would contain the same value of address2 which was
sent in the transaction request from merchant’s end to PayU

14 city This parameter would contain the same value of city which was sent in
the transaction request from merchant’s end to PayU

15 state This parameter would contain the same value of state which was sent
in the transaction request from merchant’s end to PayU

16 country This parameter would contain the same value of country which was
sent in the transaction request from merchant’s end to PayU

17 zipcode This parameter would contain the same value of zipcode which was
sent in the transaction request from merchant’s end to PayU

18 email This parameter would contain the same value of email which was sent
in the transaction request from merchant’s end to PayU

19 phone This parameter would contain the same value of phone which was sent
in the transaction request from merchant’s end to PayU

20 udf1 This parameter would contain the same value of udf1 which was sent
in the transaction request from merchant’s end to PayU

21 udf2 This parameter would contain the same value of udf2 which was sent
in the transaction request from merchant’s end to PayU

22 udf3 This parameter would contain the same value of udf3 which was sent
in the transaction request from merchant’s end to PayU

23 udf4 This parameter would contain the same value of udf4 which was sent
in the transaction request from merchant’s end to PayU

24 udf5 This parameter would contain the same value of udf5 which was sent
in the transaction request from merchant’s end to PayU

PayU Integration Document - Version 2.14

Page 24

25 hash This parameter is absolutely crucial and is similar to the hash

parameter used in the transaction request send by the merchant to

PayU. PayU calculates the hash using a string of other parameters and

returns to the merchant. The merchant must verify the hash and then

only mark a transaction as success/failure. This is to make sure that the

transaction hasn’t been tampered with. The calculation is as below:

sha512(SALT|status||||||udf5|udf4|udf3|udf2|udf1|email|firstname|p

roductinfo|amount|txnid|key)

The handling of udf1 – udf5 parameters remains similar to the hash

calculation when the merchant sends it in the transaction request to

PayU. If any of the udf (udf1-udf5) was posted in the transaction

request, it must be taken in hash calculation also.

If none of the udf parameters were posted in the transaction request,
they should be left empty in the hash calculation too.

26 error For the failed transactions, this parameter provides the reason of

failure. Please note that the reason of failure depends upon the error

codes provided by different banks and hence the detailing of error

reason may differ from one transaction to another. The merchant can

use this parameter to retrieve the reason of failure for a particular

transaction.

27 bankcode This parameter would contain the code indicating the payment option

used for the transaction. For example, in Debit Card mode, there are

different options like Visa Debit Card, Mastercard, Maestro etc. For

each option, a unique bankcode exists. It would be returned in this

bankcode parameter. For example, Visa Debit Card – VISA, Master

Debit Card – MAST.

28 PG_TYPE This parameter gives information on the payment gateway used for the

transaction. For example, if SBI PG was used, it would contain the

value SBIPG. If SBI Netbanking was used for the transaction, the

value of PG_TYPE would be SBINB. Similarly, it would have a

unique value for all different type of payment gateways.

29 bank_ref_num For each successful transaction – this parameter would contain the

bank reference number generated by the bank.

30 shipping_firstname This parameter would contain the same value of shipping_firstname

which was sent in the transaction request from merchant’s end to PayU

PayU Integration Document - Version 2.14

Page 25

31 shipping_lastname This parameter would contain the same value of shipping_lastname

which was sent in the transaction request from merchant’s end to PayU

32 shipping_address1 This parameter would contain the same value of shipping_address1

which was sent in the transaction request from merchant’s end to PayU

33 shipping_address2 This parameter would contain the same value of shipping_address2

which was sent in the transaction request from merchant’s end to PayU

34 shipping_city This parameter would contain the same value of shipping_city which
was sent in the transaction request from merchant’s end to PayU

35 shipping_state This parameter would contain the same value of shipping_state which
was sent in the transaction request from merchant’s end to PayU

36 shipping_country This parameter would contain the same value of shipping_country

which was sent in the transaction request from merchant’s end to PayU

37 shipping_zipcode This parameter would contain the same value of shipping_zipcode

which was sent in the transaction request from merchant’s end to PayU

38 shipping_phone This parameter would contain the same value of shipping_phone

which was sent in the transaction request from merchant’s end to PayU

39 unmappedstatus This parameter contains the status of a transaction as per the internal

database of PayU. PayU’s system has several intermediate status

which are used for tracking various activities internal to the system.

Hence, this status contains intermediate states of a transaction also -

and hence is known as unmappedstatus.

For example:

dropped/bounced/captured/auth/failed/usercancelled/pending

Table 3: Response parameters from PayU to Merchant

PayU Integration Document - Version 2.14

Page 26

Sequence Diagram for Cardless EMI

Cardless EMI Additional Response(Server to Server)

Since Cardless EMI application is longer than usual bank transactions, it is recommended to

receive live updates from PayU for the application.

If Merchant wants to receive server to server live updates from PayU for all Cardless EMI

transactions, it can be implemented in following ways:

PayU will also notify merchant server to server as additional response along with above

status update for all notifications received. Following values will be posted in notification

update to merchant:
● txnid – Transaction Id shared by merchant

● payuid – PayU Id generated at payu’s end for this transaction

● payustatus – Transaction status at payu’s end

● status – Further details of the payustatus

Sample response:

payuid=700010006174603&status=IN_PROGRESS&txnid=5467c0b5ea59b5d45088&payus

tatus=in progress

Here is the complete list of status and mapping:

STATUS PURPOSE OF THE STATE PayU Status

PayU Integration Document - Version 2.14

Page 27

OPEN

This state indicates that an application has been

created by PayU in the system.

In Progress

IN_PROGRESS

Right after OPEN, the state of the application

moves into in this state.

In Progress
This state is different from the state of the

application in the PLC.

TIMED_OUT

This state indicates that the application timed out

on the LC.

Failed
The timeout duration would be default be equal to

48 hours.

CANCELLED

This state indicates that the application has been

cancelled.

Failed
Reason_code would capture the reason of

cancellation.

UNDERWRITING

This state indicates that the application is

currently submitted and being scored by

underwriting.

In Progress

UNDERWRITING_PENDING

This state indicates that the application has moved

into review because of -

In Progress

1. An underwriting error

2. Timeout on underwriting side

3. Timeout on the LAS side

4. Non-availability of certain services.

UNDERWRITING_ACCEPTED

This state indicates that the customer has been

accepted by Underwriting. If there is a difference

payment required, it would already be added as

part of ATP conditions.

In Progress

PayU Integration Document - Version 2.14

Page 28

OFFER_ACCEPTED

The state indicates that the customer has clicked

on one of the offers and moved forward in the lead

cycle process to the eKYC step

In Progress

REJECTED

This state indicates that the customer has been

rejected by Underwriting. The reason of rejections

would be specified in the reason_codes attached to

the state change.

Failed

APPROVED_IN_PRINCIPLE

This state indicates that the customer has signed

the contract and finished the LC.

In Progress

If no ATP conditions, AIP would be followed

directly by APPROVAL_TO_PAYOUT otherwise

would stay as APPROVAL_IN_PRINCIPLE.

IN_PROGRESS_POST_LEAD_CYCLE

This state indicates that the customer has initiated

the PLC (reached the landing page for PLC).

In Progress

APPROVED_TO_PAYOUT

This state can be reached in two ways -

Captured

1. There were no ATP Conditions. In this case,

ATP is followed directly by AIP.

2. The Service Center Agent approves the

application and application moves

from IN_PROGRESS_POST_LEAD_CYCLE to this

state.

TIMED_OUT_POST_LEAD_CYCLE

This state indicates that the Partner Hold Time is

reached but application did not get to the ATP

state. This would make the application expired

and inactive.

Failed

PayU Integration Document - Version 2.14

Page 29

CANCELLED_POST_LEAD_CYCLE

This state indicates that the application was

cancelled by the Service Center.

Failed

REJECTED_POST_LEAD_CYCLE

This state indicates that the application was

marked rejected by the Service Center.

Failed

FRAUD_SUSPECTED_POST_LEAD_CYCLE

This state indicates that the application has been

marked as a suspected fraud application.

In Progress

PAYOUT_STARTED

This state is reached after the ATP state.

Captured

Loan Application System takes the necessary

actions inside Mambu and changes to this state.

The loan account is made Active in Mambu and

the interest starts getting accrued.

Based on this state notification, PayU asks the

merchant to ship the products and initiates the

transfer of loan amount to the merchant.

PAYOUT_COMPLETED

This state indicates that the merchant has been

successfully paid out.

Captured

This state is reached once the Loan Application

System reads the MT files, confirms the transfer of

payment to the merchant.

PAYOUT_ERROR

This state indicates the the status

PAYOUT_STARTED has not moved into

PAYOUT_COMPLETED after a certain amount of

time (X days).

Captured

PayU Integration Document - Version 2.14

Page 30

From this state, the system should move into

PAYOUT_COMPLETED, PAYOUT_STARTED or

PAYOUT_CANCELLED.

PAYOUT_CANCELLED

This state indicates that the payout was not

processed because PayU / merchant refused to

process this particular payout.

Captured

The agent and the reason code would show up in

the respective fields.

Whitelisting Required

Whitelisting is required at both merchant’s and PayU’s end to establish this connection.

a) Merchant needs to whitelist below IP address at their firewall side:

For production-

180.179.174.1

180.179.174.2

For integration

180.179.100.1

b) PayU needs to whitelist merchant server side IP Address–which merchant would be

providing to PayU. It will be two IP addresses: one for Option 1 and another for Option 2.

Both IP addresses could be same also as per merchant’s convenience.

URL to be shared for this response should be less than 512 characters.

Data Sharing between PayU and Merchant for Cardless EMI

For Cardless EMI option, PayU will need further information about the customer from

merchant. Merchant will share a trigger point with PayU at the time of onboarding to share

this data at the time of transaction. Also, inform PayU so that merchant data sharing at

PayU’s end can be enabled.

1. PayU hits the merchant’s trigger point with following inputs whenever data is needed:

a. Txn ID – Transaction Id received from merchant

b. PayU ID – PayU’s transaction id

c. PayU Status – Status in payu’s system

d. Status – “DATA_REQUEST” hardcoded

PayU Integration Document - Version 2.14

Page 31

Sample Value:

payuid=700010006174603&status=DATA_REQUEST&txnid=5467c0

b5ea59b5d45088&payustatus=in progress

2. In response, merchant will share data with PayU using ‘ Post Customer Transaction

History Data’ under SELLERSERVICE at this link:

https://developer.payubiz.in/v2/documentation/index.html

3. For authentication, please refer to the section ‘AUTHENTICATION’. Same key and salt

will be used.

Sample data

{

"account_id":"iwcdiu",

"payment_id":"iib8y",

"reference_id":"WEBIN/100819507/1",

"data":{

"first_name": "David",

"last_name": "Smith",

"email": "david@gmail.com",

"phone": "+919332456789",

"transaction" :[{

"delivery_details":{

"address": "43, ABC Apartments, Xyz Street",

"city": "New Delhi",

"zip": 110024,

"state": "Delhi"

},

"billing_details":{

"address": "House No. 214, Pqr Street",

"city": "Delhi",
"zip": 110203,

"state": "Delhi"

},

"basket": [{

"name": "Bass Speaker",

"code": "SBS12",

"description": "Bose Bass Speaker as part of 5.1 or 7.1 Surround Sound",

"quantity": 1,

"price": "",

"added_on": "2017-11-01T15:00:00+05:30",

"removed_on": ""

},

{

"name": "Wireless Speaker Module",

"code": "WS003",
"description": "Boat Wireless Speaker",

https://developer.payubiz.in/v2/documentation/index.html
mailto:david@gmail.com

PayU Integration Document - Version 2.14

Page 32

"quantity": 1,

"price": 1300,

"added_on": "2017-11-01T15:04:30+05:30",

"removed_on": "2017-11-01T15:05:00+05:30"

}

],

"purchase":{

"added_on": "2017-11-01T15:10:00+05:30",

"number_of_items": 1,

"total_cost": 33500,

"tax": 6600,

"shipping_cost": "",

"payment_method": "Credit Card",

"reverse_amount": 33000,
"number_of_items_returned": 1,
"total_cost_returned": 33500

},

"visit": [{

"begin_timestamp": "1509548400",

"end_timestamp": "1509552000",

"url": "http://www.amazon.in/"
}],

"device": [{

"device_fingerprint": "string",

"user_agent": "string"
}]

}]

}

}

Enabling HDFC Debit Card, Bajaj Finserv, Axis Debit Card and Zest Money EMIs

For all these EMIs, merchant will have to display a button for each EMI option on their

payment page and then enforce, by passing the different combination of values in

“enforce_paymethod” as per the table given below, the one chosen by the customer while

sending the transaction request by PayU. No additional information needs to be posted in the

transaction request.

In this phase, merchant who are using PayU checkout page for collecting payment option

related information for rest of their payment options will not be able to avail these EMI

options without any changes. If any such merchant wants to avail any of these EMI options

then they will have to display different buttons for different EMI options on their page and

use the enforce parameter method, as given above.

EMI

Option

Value of enforce_paymethod

Eligibility Amount

range

HDFC

Debit

Card

HDFCD06|HDFCD09|HDFCD12|HDFCD18

5,00,000>=Transaction

amount>=5,000

http://www.amazon.in/

PayU Integration Document - Version 2.14

Page 33

EMI

Bajaj

Finserv

EMI

BAJFIN03|BAJFIN03|BAJFIN06|BAJFIN09|BAJFIN12

Transaction

amount>=4,499

Zest

Money

EMI

ZESTMON

3,00,000>=Transaction

amount>=1,000

Axis

Debit

Card

EMI

AXISD03|AXISD06|AXISD09|AXISD12|AXISD18|AXISD24

1,00,000>=Transaction

amount>=5,000

EMI option specific handling/information-

For Axis Debit Card,

Single item should be there in the cart since partial refunds are not allowed on this EMI

option.

For HDFC Debit Card EMI

Merchant will have to call Proof of Delivery API, details given on page number 73, as soon

as the services/goods has been delivered to the customer.

The maximum time allowed will be 15 days before we notify your team of transactions where

we haven’t received proof of delivery and it might lead to EMI option deactivation.

For Bajaj Finserv EMI

Merchant will have to call Proof of Delivery API, , details given on page number 73, as soon

as the services/goods has been delivered to the customer.

The maximum time allowed will be 15 days before we notify your team of transactions where

we haven’t received proof of delivery and it might lead to EMI option deactivation.

Also, since decimal values are not supported in Bajaj Finserv system, we round up/down the

amount depending whether it is sale request or refund request.

This will be by default No Cost EMI from customer standpoint so the net amount customer

will be charged by Bajaj Finserv will be amount sent by bank only.

For Zest Money EMI

Merchants will not be able to enforce specific tenures since tenures are known once customer

has been authenticated.

It is recommended that merchant passes the customer mobile number in “phone” parameter

while sending the transaction request to PayU so that the customer doesn’t have to enter the

PayU Integration Document - Version 2.14

Page 34

mobile number on PayU checkout page, customer will have the option to edit the mobile

number in case she wishes to change the mobile number.

Shopping Cart Integration Kits
Shopping Cart Kits currently available with PayU are:

● Interspire

● Opencart

● Jhoomla Virtue Mart

● Magento

● Prestashop

● Tomatocart

● Zencart

● CS-Cart

● OSCommerce

● Wordpress ecommerce

● WordPress Woo-commerce

● Wordpress - Paid Membership Pro

● Drupal Ubercart

● X-Cart

Platform based Integration kits
PayU Integration Kits are available in the following environments:

● PHP

● JSP

● .NET

● ROR

NOTE: Kindly contact your account manager in case you are using some other shopping

cart and want us to develop a kit for the same.

NOTE: In case of any integration queries, please drop a mail at tech@payu.in

mailto:tech@payu.in

PayU Integration Document - Version 2.14

Page 35

SECTION II: WEB SERVICES – APIs

PayU has made many web-services for you. Each web-service has a specific function and

hence can be used to automate different features. The basic format and execution of all web-

services remains the same. Each web-service is a server-to-server call from your server to

PayU’s server.

Web services can be accessed by making a server to server call on the below mentioned

PayU URLs:
URL to be used:

For Production Server:

https://info.payu.in/merchant/postservice.php?form=1

(form=1 shall return output in array form)

https://info.payu.in/merchant/postservice.php?form=2

(form=2 shall return output in json form)

For Test Server:

https://test.payu.in/merchant/postservice.php?form=1

(form=1 shall returns output in array form)

https://test.payu.in/merchant/postservice.php?form=2

(form=2 shall return output in json form)

Web Service Request Format:
The input request format for executing a web-service is as follows:

Mandatory Input Parameters

Parameter Description
Sample Value

key

Merchant key provided by PayU. Please refer to the first entry

in the Post Parameters table for detailed description of this

parameter

Ibibo

command

This parameter must have name of the web-service. The

names and definitions of all web-services will be covered later

in detail

verify_payment

hash

This parameter must contain the hash value to be calculated at

your end. The string used for calculating the hash is mentioned

below:
sha512(key|command|var1|salt)

sha512 is the encryption method used here.

ajh84ba8abvav

var1, var2, var3 ...
up to var15

These are the variable parameters, whose values depend on the

particular web-service. The definition of these parameters will

be covered in the (Read command explanations mentioned

later for this)

Abc

https://info.payu.in/merchant/postservice.php?form=1
https://info.payu.in/merchant/postservice.php?form=2
https://test.payu.in/merchant/postservice.php?form=1
https://test.payu.in/merchant/postservice.php?form=2

PayU Integration Document - Version 2.14

Page 36

Web Service Response Format
Web Service API responds back in PHP serialized string by default.

Parameter Description Sample Value

status Status of web service call
0 if web service call failed
1 if web service call succeeded

msg

Reason String

Parameter missing or token is empty

or amount is empty or transaction

not exists

transaction_details
May or may not be returned depending on
the web service being called

mihpayid,request_id, bank_ref_num
etc

request_id

PayU Request ID for a request in a

Transaction. eg. A transaction can have a

refund request.

7800456

bank_ref_num
Bank Reference Number. If bank provides
after a successful action.

204519474956

LIST OF APIs AND THEIR DESCRIPTION

1) verify_payment
This web-service is used to reconcile the transaction with PayU. When we post back the

final response to you (merchant), we provide a list of parameters (including the status of the

transaction – For example, success, failed etc). On a few occasions, the transaction response

is initiated from our end, but it doesn’t reach you due to network issues or user activity (like

refreshing the browser etc).

This API is helpful to tackle such cases - where you can execute it to get the status of the

transaction. Since you already have the txnID (Order ID generated at your end) value for

such cases, you simply need to execute the verify_payment API with the necessary input

parameters. The output would return you the transaction status and various other parameters

also.

Another usage of this API is to provide an additional layer of verification of the transaction

(in addition to checksum). You can verify the status and other parameters received in the post

response via this API.

We strongly recommend that this API is used to reconcile with PayU’s database once

you receive the response. This will protect you from any tampering by the user and help

in ensuring safe and secure transaction experience.

The return parameters are MIHPayID, Amount, Discount, Mode and Status of transaction.

Input Variables Description:

Parameter Description Sample Value

var1

In this parameter, you can put all the txnid(Your

transaction ID/order ID) values in a pipe

separated form.

100123|100124|100125|100126

Web Service Responses:

● If successfully fetched

PayU Integration Document - Version 2.14

Page 37

Array

(

[status] => 1

[msg] => 1 out of 1 Transactions Fetched Successfully

[transaction_details] => Array

(

[100123] => Array

(

[mihpayid] => 403993715511385302

[request_id] =>

[bank_ref_num] => 3465241441650741

[amt] => 63050.00

[txnid] => 100123

[additional_charges] => 0.00

[productinfo] => book

[firstname] => uday

[bankcode] => CC

[udf1] =>

[udf3] =>

[udf4] =>

[udf5] =>

[field9] => SUCCESS

[error_code] => E000

[error_Message] => NO ERROR

[net_amount_debit] => 63050

[disc] => 0.00

[mode] => CC

[PG_TYPE] => HDFCPG

[card_no] => 512345XXXXXX2346

[name_on_card] => shop

[udf2] =>

[addedon] => 2015-03-15 16:44:21

[status] => success

[unmappedstatus] => captured

)

)

)

● If txnID not found

Array

(

[status] => 0

[msg] => 0 out of 1 Transactions Fetched Successfully

[transaction_details] => Array

(

[ecc5tashi] => Array

(

[mihpayid] => Not Found

[status] => Not Found

)

)

)

2) check_payment

This API functions similar to verify_payment API mentioned above. The only difference is

that the input parameter in this API is the PayUID (MihpayID) generated at PayU’s end

PayU Integration Document - Version 2.14

Page 38

whereas the input parameter in verify_payment API is the TxnID (Transaction ID generated

at your end). It returns all the parameters for a given transaction.
Input Variables Description:

Parameter Description Sample Value

var1
In this parameter, you need to pass the Payu id (mihpayid) of
the transaction.

8000123

Web Service Responses:

● If mihpayid is missing

Array

(

[status] => 0

[msg] => Parameter missing

)

● If successfully fetched

Array

(

[status] => 1

[msg] => Transaction Fetched Successfully

[transaction_details] => Array

(

[request_id] => 124755210

[bank_ref_num] => 3465241441650741

[net_amount] => 63050.00

[mihpayid] => 403993715511385302

[amt] => 63050.00

[disc] => 0.00

[mode] => CC

[txnid] => ecc5tashiv

[amount] => 63050.00

[amount_paid] => 63050.00

[discount] => 0.00

[additional_charges] => 0.00

[udf1] =>

[udf2] =>

[udf3] =>

[udf4] =>

[udf5] =>

[field1] => 507442425118

[field2] => 999999

[field3] => 3465241441650741

[field4] => -1

[field5] =>

[field6] =>

[field7] =>

[field8] =>

[field9] => SUCCESS

[status] => success

[net_amount_debit] => 63050

[unmappedstatus] => captured

[firstname] => uday

[bankcode] => CC

PayU Integration Document - Version 2.14

Page 39

[productinfo] => book

[name_on_card] => shop

[card_no] => 512345XXXXXX2346

[PG_TYPE] => HDFCPG

)

)

3) cancel_refund_transaction

This command can be used for 2 different purposes:

● To cancel a transaction which is in ‘auth’ state at the moment

● To refund a transaction which is in ‘captured’ state at the moment

Input Variables Description:

Parameter Description Sample Value

var1 Payu ID (mihpayid) of transaction 8000123

var2

This parameter should contain the Token ID (unique token from

merchant) for the refund request. Token ID has to be generated at your

end for each new refund request. It is an identifier for each new refund

request which can be used for tracking it. It must be unique for every

new refund request generated – otherwise the refund request would

not be generated successfully.

Token ID length should not be greater than 23 characters

7800456

var3

For captured transaction:

This parameter should contain the amount which needs to be refunded.

Please note that both partial and full refunds are allowed.

Hence, for partial refund, this var3 value would be less than the

amount with which the transaction was made. For full refund, var3

value would be equal to the amount with which the transaction was

made.

For pre-auth transaction:

If the transaction is in pre-auth state currently, then only a full

cancellation is allowed. The amount must be same as the auth
amount. Partial amount would not be allowed.

500

Web Service Responses:

● if token is missing

Array

(

[status] => 0

[msg] => token is empty

)

● if amount is missing

Array

PayU Integration Document - Version 2.14

Page 40

(

[status] => 0

[msg] => amount is empty

)

● if transaction isn't found

Array

(

[status] => 0

[msg] => transaction not exists

)

● on successful processing at our end

Array

(

[status] => 1

[msg] => Cancel Request Queued

[txn_update_id] => Request ID

[bank_ref_num] => Bank Reference Number

[mihpayid] => PayU Transaction id

)

● on successful processing on our end for captured transactions

Array

(

[status] => 1

[msg] => Refund Request Queued

[request_id] => Request ID

[bank_ref_num] => Bank Reference Number

[mihpayid] => PayU Transaction id

)

● if failed to refund

Array

(

[status] => 0

[msg] => Refund request failed

)

● if capture is done on the same day

Array

(

[status] => 1

[msg]=> Capture is done today, please check for refund status tomorrow

[request_id] => Request ID

[bank_ref_num] => Bank Reference Number

[mihpayid] => PayU ID

)

● if invalid token

PayU Integration Document - Version 2.14

Page 41

Array

(

[status] => 0

[msg] => token already used or request pending.

)

● on successful processing at PayU end for auth transactions

Array

(

[status] => 1

[msg] => Cancel Request Queued

[txn_update_id] => Request ID

[bank_ref_num] => Bank Reference Number

)

● if failed to cancel a transaction

Array

(

[status] => 0

[msg] => Cancel request failed

)

4) check_action_status (1ST Usage)

This API is used to check the status of refund/cancel requests. Whenever the

cancel_refund_transaction API is executed successfully, a Request ID is returned in the

output parameters for that particular request. In check_action_status API, you need to input

this Request ID to get the current status of the request. The return parameters are MIHPayID,

Amount, Discount, Mode and Status of transaction.

Input Variables Description:

Parameter Description Sample Value

var1 request_id 7800456

Web Service Responses:

● if mihpayid is missing

Array

(

[status] => 0

[msg] => Parameter missing

)

● if mihpayid isn't found

Array

(

[status] => 0

[msg] => 0 out of 1 Transactions Fetched Successfully

[transaction_details] => Array

PayU Integration Document - Version 2.14

Page 42

(

[1247498364] => No action status found

)

)

● if successfully fetched

Array

(

[status] => 1

[msg] => 1 out of 1 Transactions Fetched Successfully

[transaction_details] => Array

(

[124749836] => Array

(

[124749836] => Array

(

[mihpayid] => 403993715511370816

[bank_ref_num] =>

[request_id] => 124749836

[amt] => 10.00

[mode] => DC

[action] => refund

[token] => recon_40399371551137081

[status] => failure

[bank_arn] =>

[settlement_id] =>

[amount_settled] => -10.00

[UTR_no] =>

[value_date] =>

)

)

)

)

5) check_action_status (2nd Usage)

This command has a second usage also. For a particular PayUID, it returns the status of all

requests (capture/refund/cancel).

Input Variables Description:

Parameter Description Sample Value

var1 Payu ID (mihpayid) of transaction 8000123

var2 String Payuid i.e. 'payuid' payuid

● If successfully fetched

You will get both 1) Transaction success information and 2) Refund information as well

Array

(

[status] => 1

[msg] => 1 out of 1 Transactions Fetched Successfully

PayU Integration Document - Version 2.14

Page 43

[transaction_details] => Array

(

[403993715510993714] => Array

(

[124508550] => Array

(

[mihpayid] => 403993715510993714

[bank_ref_num] => 114952

[request_id] => 124508550

[amt] => 1.00

[mode] => CC

[action] => auth

[token] =>

[status] => SUCCESS

[bank_arn] =>

[settlement_id] =>

[amount_settled] => 1.00

[UTR_no] =>

[value_date] =>

)

[124508552] => Array

(

[mihpayid] => 403993715510993714

[bank_ref_num] =>

[request_id] => 124508552

[amt] => 1.00

[mode] => CC

[action] => capture

[token] => 1422619587

[status] => failure

[bank_arn] =>

[settlement_id] =>

[amount_settled] => 1.00

[UTR_no] =>

[value_date] =>

)

[124538030] => Array

(

[mihpayid] => 403993715510993714

[bank_ref_num] =>

[request_id] => 124538030

[amt] => 1.00

[mode] => CC

[action] => capture

[token] => 1422619587

[status] => requested

[bank_arn] =>

[settlement_id] =>

[amount_settled] => 1.00

[UTR_no] =>

[value_date] =>

)

)

)

)

PayU Integration Document - Version 2.14

Page 44

6) getAllRefundsFromTxnIds

This command is used to retrieve status of all the refund requests fired for a particular

Transaction ID. The output of this API provides the request ID, the PG used, the status of

refund request and creation of refund date information.

Input Variables Description:
Parameter Description Sample Value

var1
In this parameter, you need to pass the Transaction ID (txnid)

of the transaction.
8000123

● If successfully fetched

Array

(

[status] => 1

[msg] => Refunds fetched successfully.

[Refund Details] => Array

(

[8000123] => Array

(

[0] => Array

(

[PayuID] => 8000123

[RequestID] => 124748442

[RefundToken] => 2348596079

[PaymentGateway] => HDFCPG

[Amount] => 10.00

[Status] => failure

[RefundCreationDate] => 2015-03-13 19:01:55

)

[1] => Array

(

[PayuID] => 8000123

[RequestID] => 124748448

[RefundToken] => 2488596981

[PaymentGateway] => HDFCPG

[Amount] => 10.00

[Status] => success

[RefundCreationDate] => 2015-03-13 19:02:28

)

[2] => Array

(

[PayuID] => 8000123

[RequestID] => 124749836

[RefundToken] => 2423456782

[PaymentGateway] => HDFCPG

[Amount] => 14.00

[Status] => success

[RefundCreationDate] => 2015-03-14 01:13:25

)

)

)

)

PayU Integration Document - Version 2.14

Page 45

● If no refunds found

Array

(

[status] => 1

[msg] => No Refunds Found for the transaction.

)

7) capture_transaction

This command is used to update the status of a transaction which is in auth (authorized) state

at the moment. Please note that this API is applicable only for transactions in pre-auth status.

Once the API is success, the transaction would be captured and settled to merchant.
Input Variables Description:

Parameter Description Sample Value

var1 Payu ID (mihpayid) of transaction 8000123

var2 token ID(unique token from merchant) 7800456

var3
Amount to be captured. It can be a equal to or less than or

more than auth amount to certain limit than the amount used
in pre-auth transaction

50

Web Service Responses:

● If token is missing

Array

(

[status] => 0

[msg] => token is empty

)

● If transaction isn't found

Array

(

[status] => 0

[msg] => transaction not exists

)

● On successful processing at our end

Array

(

[status] => 1

[msg] => Capture Request Queued

[request_id] => Request ID

[bank_ref_num] => Bank Reference Number

)

● If invalid token

PayU Integration Document - Version 2.14

Page 46

Array

(

[status] => 0

[msg] => token already used or request pending.

)

● If failed to refund

Array

(

[status] => 0

[msg] => Capture request failed

)

7) update_requests

This command is used to update a requested refund, cancel, or capture transaction. The return

parameters are status and msg. For example, in case of COD transaction, if a refund is

initiated its status goes to ‘requested’ state. Once the refund is done, then its status can be

changed to ‘refund’ by calling this API.
Input Variables Description:

Parameter Description Sample Value

var1 Payu id (mihpayid) of transaction 8000123

var2

Request ID (unique id given to merchant) provided when

cancel_transaction or refund_transaction or capture_transaction

was called)

7800456

var3 Bank Ref Id for the requested transaction Abc123

var4 Amount of the requested transaction 5000

var5 Action (cancel/capture/refund) Refund

var6 New Status to be set Success/failure

Web Service Responses:

● If bank_ref_no is missing

Array

(

[status] => 0

[msg] => bank_ref_no is empty

)

● If amount is missing

Array

(

[status] => 0

[msg] => amount is empty

)

PayU Integration Document - Version 2.14

Page 47

● If transaction isn't found

Array

(

[status] => 0

[msg] => transaction not exists

)

● If action is not valid

Array

(

[status] => 0

[msg] => action is not valid

)

● If status is not correct

Array

(

[status] => 0

[msg] => status is not correct

)

● On success

Array

(

[status] => 1

[msg] => Status updated to success.

)

● On failure

Array

(

[status] => 0

[msg] => Status could not be updated. Please verify the parameters.

)

8) cod_verify

This command is used to verify a COD request. When a transaction is successful through

PayU, it is marked as ‘in progress’ at that moment. The reason is that the money hasn’t been

received yet and hence we mark it in this intermediary state. Once you verify the transaction

with the customer, you can execute this API to update the status in PayU Database from ‘in

progress’ to ‘pending’. The return parameters are status, message and transaction ID.

Input Variables Description:

Parameter Description Sample Value

var1 Payu ID (mihpayid) of transaction 8000123

var2 Token ID(unique token from merchant) 7800456

PayU Integration Document - Version 2.14

Page 48

var3 Amount 500

Web Service Responses:

● If token is missing

Array

(

[status] => 0

[msg] => token is empty

)

● If amount is missing

Array

(

[status] => 0

[msg] => amount is empty

)

● If amount is invalid

Array

(

[status] => 0

[msg] => Invalid amount

)

● If transaction isn't found

Array

(

[status] => 0

[msg] => transaction not exists

)

● On successful processing at PayU end

Array

(

[status] => 1

[msg] => Queued

[transaction_id] => $mihpayid

)

● If failed to verify a request

Array

(

[status] => 0

[msg] => Failed

[error_code] => $verifyReturn['status']

)

PayU Integration Document - Version 2.14

Page 49

9) cod_cancel

This command is used to cancel a cod request. When a COD transaction is successful at

PayU’s end in real time, its status is marked as ‘in progress’ at that moment. This API can be

executed to change the transaction status from ‘in progress’ to ‘cancelled’ in the PayU

database. It is suggested to execute this API only when you are sure you want to cancel the

transaction. Updating this way in PayU Database would help you in tracking such orders for

future purpose – through the merchant panel provided to you. The return parameters are

status message and transaction ID.

Additional Variables Description:

Parameter Description Sample Value

var1 Payu ID (mihpayid) of transaction 8000123

var2 Token ID(unique token from merchant) 7800456

var3 Amount 500

Web Service Responses:

● If token is missing

Array

(

[status] => 0

[msg] => token is empty

)

● If amount is missing

Array

(

[status] => 0

[msg => amount is empty

)

● If amount is invalid

Array

(

[status] => 0

[msg] => Invalid amount

)

● If transaction isn't found

Array

(

[status] => 0

[msg] => transaction not exists

)

● On successful processing at PayU end

PayU Integration Document - Version 2.14

Page 50

Array

(

[status] => 1

[msg] => Queued

[transaction_id] => $mihpayid

)

● If failed to cancel a request

Array

(

[status] => 0

[msg] => Failed

[error_code] => $cancelReturn['status']

)

10) cod_settled

This command is used to settle a COD request. cod_settled API should be executed on a

transaction only when cod_verify has already been executed. cod_settled updates the

transaction status from ‘pending’ to ‘captured’. It is suggested, that you execute this API only

when you are sure that money has been successfully received from the customer at your end.

Doing it this way would ensure you can track such orders in the future through the merchant

panel provided to you. The return parameters are status message and Transaction ID.

Input Variables Description:

Parameter Description Sample Value

var1 Payu id (mihpayid) of transaction 8000123

var2 token ID(unique token from merchant) 7800456

var3 amount 500

Web Service Responses:

● If token is missing

Array

(

[status] => 0

[msg] => token is empty

)

● If amount is missing

Array

(

[status] => 0

[msg] => amount is empty

)

● If amount is invalid

Array

PayU Integration Document - Version 2.14

Page 51

(

[status] => 0

[msg] => Invalid amount

)

● If transaction isn't found

Array

(

[status] => 0

[msg] => transaction not exists

)

● On successful processing at PayU end

Array

(

[status] => 1

[msg] => Queued

[transaction_id] => $mihpayid

)

● If failed to settled a request

Array

(

[status] => 0

[msg] => Failed

[error_code] => $settledReturn['status']

)

11) get_TDR

This command is used to get the TDR value of a transaction with PayU. It is a simple API for

which you need to provide the PayU ID of the transaction as input and the TDR value is

returned in the output.
Input Variables Description:

Parameter Description Sample Value

var1 Payu id (mihpayid) of transaction 8000123

Web Service Responses

● If mihpayid is not found

Array

(

[status] => 0

[msg] => Invalid PayU ID

)

● If successfully fetched

PayU Integration Document - Version 2.14

Page 52

Array

(

[status] => 1

[msg] => Transaction Fetched Successfully

[TDR_details] => Array

(

[TDR] => <Value>

)

)

12) udf_update

This command is used to update the UDF1-UDF5 values of a transaction. UDFs are the user-

defined fields which are posted from the merchant to PayU. This API is specifically used to

update the values in these fields in PayU Database. The return parameters are the updated

UDF values of transaction.

Input Variables Description:

Parameter Description Sample Value

var1 transaction ID(txnid) 7cf3f43146da5a319ccc

var2 udf1 of transaction 8000123

var3

udf2 of transaction

4334343

var4 udf3 of transaction 434343

var5 udf4 of transaction Abcd123

var6 udf5 of transaction Efgh1234

Web Service Responses

● If transaction ID is empty

Array

(

[status] => 0

[msg] => Parameter missing

)

● If transaction ID is invalid

Array

(

[status] => 0

[msg] => Invalid TXN ID

)

● If successfully updated

Array

PayU Integration Document - Version 2.14

Page 53

(

[status] => UDF values updated

[transaction_id] => 7cf3f43146da5a319ccc

[udf1] => 8000123

[udf2] => 4334343

[udf3] => 434343

[udf4] => Abcd123

[udf5] => Efgh1234

)

13) create_invoice

This API is provided to the merchant to create an email invoice for a customer and gives the

merchant an option of sending the email invoice immediately to the customer or it can be

automated to be sent later.

Input Variables Description:
Parameter Sample Value

var1 {"amount":"10","txnid":"abaac3332","productinfo":"jnvjrenv","firstname":"test","em

ail":"test@test.com","phone":"1234567890","address1":"testaddress","city":"test","stat

e":"test","country":"test","zipcode":"122002","template_id":"14","validation_period":

6,"send_email_now":"1"}

Here, the input var1 parameter has to be generated in the json string format mentioned in the

sample value string above. This string shows each parameter and its corresponding value

separated by the delimiter colon (:). The parameters are also separated by the comma

delimiter (,)

Following is the description of the parameters in the above mentioned string:
Parameter Description

amount

(Mandatory)

Payment Amount

txnid (Mandatory)

Merchant generated transaction number which is used to track a particular order.

(Must be unique every time if already successful, otherwise you get an error of

duplicate transaction)

productinfo
(Mandatory)

Product Description

firstname
(Mandatory)

Self-Explanatory (only alphabets a-z are allowed)

email (Mandatory) Self-explanatory

phone (Mandatory) Self-explanatory (Numeric Value only)

address1

Self-Explanatory (Length of Address1 must not be more than 100 characters and

the allowed characters are only) A TO Z, a to z, 0 to 9, @, - (Minus), _

(Underscore), / (Backslash), (Space), (Dot)

city Self-explanatory (allowed characters are same as in address1)

state Self-explanatory (allowed characters are same as in address1)

Country Self-explanatory (allowed characters are same as in address1)

Zipcode Self-explanatory (numeric value only)

mailto:test@test.com
mailto:test@test.com

PayU Integration Document - Version 2.14

Page 54

template_id

Template ID to be provided in case of more than one email invoice templates.

Merchant can decide which template to use and provide that particular template

ID in this parameter

validation_period
Number of days for which the email invoice usage is valid (If this field is left

empty, then default value will be taken as 7 days)

send_email_now

1 - If the merchant wants to automatically send the email invoice request to the

customer at the time of creation of email invoice itself
0 - If the merchant doesn't want to send the email invoice request to the customer
at the creation time itself. In this case, the email would be sent later automatically

Web Service Responses

● If successfully executed

Array

(

[Transaction Id] => abaac3332

[Email Id] => test@test.com

[Phone] => 1234567890

[Status] => Success

[URL] =>

https://test.payu.in/processInvoice?invoiceId=9eec02ac9e2efc335bdda2d748612

1ce03de24c2fa7d32d17462ad5a6a9058db

)

● If duplicate transaction id is used

Invoice for this transaction ID already exists.

● If invalid parameter is sent*

Invalid <parameter>

Note*: Here <parameter> value displayed would be the incorrect parameter provided

Array

(

14) expire_invoice

This API is used to expire an invoice link corresponding to the txnID. In a few cases – an

invoice might be sent to an incorrect email ID by the merchant. In such scenario, merchant

might want to discard the invoice by expiring it. This API can be useful in such scenario.

● If invoice is successfully expired, and the transaction isn’t already in progress

[status] => 1

[msg] => Invoice expired

)

● If invoice is successfully expired, but the transaction is already in progress

Array

(

[status] => 1

mailto:test@test.com

PayU Integration Document - Version 2.14

Page 55

[msg] => Invoice expired, Transaction is already in progress

)

● If invoice doesn’t exist for txnID

Array

(

[status] => 0

[msg] => Invoice does not exist for this txnid

)

15) check_offer_status (1st Usage)

This API is used to check the status of an offer for a particular merchant when all the details

are passed. The return parameters are status, msg, discount/error_code, category, offer_key,

offer_type(instant/ cashback) , offer_availed_count, offer_remaining_count.

Input Variables Description:

Parameter Description Sample Value

var1 Offer Key(mandatory) offer@123

var2 Amount 100

var3 Category CC

var4 Bank Code CC

var5 Card Number(mandatory) 5432112345678901

var6 Name on Card Nitesh

var7 Phone Number 91234567890

var8 Email Id abc@xyz.com

Error Codes:

● 'INVALID_OFFER'=>'E001',

● 'INVALID_PAYMENT_METHOD'=>'E002'

In the Output:

● Parameter ‘status’ = 1, means offer is valid

● Parameter ‘status’ = 0, means offer is invalid.

Web Service Responses:

Note: In the response, category will be the passed Category.

● If the offer is a valid offer

Array

(

[status] => 1

[msg] => Valid offer

[discount] => 15

[category] => creditcard

[offer_key] => testoffer12312@5788

mailto:abc@xyz.com

PayU Integration Document - Version 2.14

Page 56

[offer_type] => instant

[offer_availed_count] => 5

[offer_remaining_count] => 3

)

● If the offer is expired

Array

(

[status] => 0

[msg] => Offer expired.

[error_code] => E001

[category] => creditcard

[offer_key] => newoffer1@5686

[offer_type] => instant

[offer_availed_count] => Unknown

[offer_remaining_count] => Unknown

)

● If the card limit is exhausted

Array

(

[status] => 0

[msg] => Offer Exhausted

[error_code] => E001

[category] => creditcard

[offer_key] => newoffer1@568

[offer_type] => Unknown

[offer_availed_count] => Unknown

[offer_remaining_count => Unknown

)

● If offerKey is invalid

Array

(

[status] => 0

[msg] => Invalid offer Key

[error_code] => E001

[offer_key] => newoffer1@568

[offer_type] => Unknown

[offer_availed_count] => Unknown

[offer_remaining_count] => Unknown

)

16) check_offer_status (2nd Usage)

This API is used to check the status of an offer when only the parameters Offer Key and card

number are passed as input. This API can be used to check the offer status when offer is

created using bin only. In this case we can depict that the offer has been created for which

category (like CC/DC/NB/EMI). Hence, for using this API, you need to pass the Offer Key

and Card Number in var1 and var5 field as inputs and leave the rest field empty.

The return parameters are status, msg, error_code (In case of error), category, offer_key,

offer_type (instant/cashback), offer_availed_count, ‘offer_remaining_count'.

PayU Integration Document - Version 2.14

Page 57

Input Variables Description:
Parameter Description Sample Value

var1 Offer Key(mandatory) offer@123

var2 Empty -

var3 Empty -

var4 Empty -

var5 Card Number(mandatory) 5432112345678901

Error Codes:

● 'INVALID_OFFER'=>'E001',

● 'INVALID_PAYMENT_METHOD'=>'E002'

Output:

● Parameter ‘Status’ = 1, means offer is valid

● Parameter ‘Status’ = 0, means offer is invalid

Web Service Responses:

● If the offer is a valid offer for the given card number(bin)

Array

(

[status] => 1

[msg] => Valid offer

[category] => creditcard

[offer_key] => abc@123

[offer_type] => instant

[offer_availed_count] => 5

[offer_remaining_count => 1

)

● If the offer is expired

Array

(

[status] =>0

[msg] => Offer Expired

[error_code] => E001

[category] => Unknown

[offer_key] => offerKey

[offer_type] => Unknown

[offer_availed_count] => Unknown

[offer_remaining_count] => Unknown

)

● If the card limit is exhausted

Array

(

[status] => 0

[msg] => Offer Exhausted

[error_code] => E001

PayU Integration Document - Version 2.14

Page 58

[category] => Unknown

[offer_key] => offerKey

[offer_type] => Unknown

[offer_availed_count] => Unknown

[offer_remaining_count] => Unknown

)

)

● If the offer is an invalid offer for the given card number(bin)

Array

(

[status] => 0

[msg] => Invalid offer

[error_code] => E001/E002

[offer_key] => abc@123

[offer_type] => Unknown

[offer_availed_count] => Unknown

[offer_remaining_count] => Unknown

)

17) getNetbankingStatus

This API is used to help you in handling the NetBanking Downtime. A few times, one or

more Net Banking options may be facing downtime due to issues observed at Bank’s end.

This API is used to tell the status of one or all the net banking options. The status can be

either up or down. If you want to know the status of a specific Net Banking option, the input

parameter should contain the corresponding ibibo_code. If you want to know the status of all

the Net Banking options, the input parameter should contain the value ‘default’.

Input variable description:

Parameter Description Sample Value

var1 ibibo_code or “default” AXIB/“default”

Web Service Responses:

Case a: To get status of one Net Banking Option (The specific ibibo_code is passed in

input)

Response:
Array

(

[AXIB] => array

(

)

)

Note:

[ibibo_code] => AXIB

[title] => AXIS Bank NetBanking

[up_status] => 0

● up_status = 0 signifies that the particular Bank option is down at the moment.

● up_status=1 signifies that the particular Bank Banking option is up at the moment.

Case b: To get status of all Net Banking options. (The value “default” is passed in input)

PayU Integration Document - Version 2.14

Page 59

Web Service Responses:

Array

(

[AXIB] => array

(

[ibibo_code] => AXIB

[title] => AXIS Bank NetBanking

[up_status] => 1

)

[BOIB] => array

(

[ibibo_code] => BOIB

[title] => Bank of India

[up_status] => 1

)

[BOMB] => array

(

[ibibo_code] => BOMB

[title] => Bank of Maharashtra

[up_status] => 1

)

[CABB] => array

(

[ibibo_code] => CABB

[title] => Canara Bank

[up_status] => 1

)

.

.

.

. <All the other banks and their status>

Note:

● up_status = 0 signifies that the particular Bank option is down at the moment.

● up_status= 1 signifies that the particular Bank Banking option is up at the moment.

18) getIssuingBankStatus

This API is used to help you in handling the Credit Card/Debit Card Issuing Bank Downtime.

It allows you get the present status of an Issuing Bank using the specific Bank Identification

Number (BIN). BIN is identified as the first 6 digits of a credit/debit card. You need to

provide the bin number as input and the corresponding issuing bank’s status would be

returned in the output (whether up or down).

Input variable description:

Parameter Description Sample Value

var1 Bank Identification Number(First 6 digits of a card) 512345

Web Service Responses:

PayU Integration Document - Version 2.14

Page 60

Array

(

[issuing_bank] => HDFC

[up_status] => 1

)

Note:

● up_status = 0 signifies that the particular Bank option is down at the moment.

● up_status= 1 signifies that the particular Bank Banking option is up at the moment.

19) getIssuingBankDownBins

This command is used to retrieve the card bins for all banks which are observing either full

downtime or partial downtime at an instant. The information related to full/partial downtime

depends on the input parameter values.

Input Variables Description:
Parameter Description Sample Value

var1 Bank Name code (To be Provided by PayU) or “default” Default

var2
1 if you want to extract information about partially down bins as

well and 0 if you want information about fully down bins only.

0/1

Web Service Responses:

● If successfully fetched

Array

(

[0] => Array

(

[issuing_bank] => KOTAK

[status] => 0

[title] => KOTAK MAHINDRA BANK LTD

[bins_arr] => Array

(

[0] => 429393

[1] => 416644

[2] => 416645

[3] => 416643

[4] => 416646

[5] => 436390

)

)

[1] => Array

(

[issuing_bank] => ALLBD

[status] => 2

[title] => ALLAHABAD BANK

[bins_arr] => Array

(

[0] => 430450

[1] => 421337

)

)

)

PayU Integration Document - Version 2.14

Page 61

The values referring to the array can be described below:

● [issuing_bank] => The bank which is down or partially down

● [bins_arr] => The card bins array

● [status] => 0 if the issuing bank is completely down and 2 if it is partially down

● [title] => title of the bank

20) get_Transaction_Details

This API is used to extract the transaction details between two given time periods. The API

takes the input as two dates (initial and final), between which the transaction details are

needed. The output would consist of the status of the API (success or failed) and all the

transaction details in an array format.

Input variable description:

Parameter Description Sample Value

var1 Starting Date (From when the transaction details

are needed) in yyyy-mm-dd format

2014-01-12

var2 End Date (Till when the transaction details are

needed) in yyyy-mm-dd format

2014-01-13

Web Service Responses:

The status variable would be 1 for successful web-service execution and would be 0 in case

of unsuccessful web-service execution. Output would be returned in the following array

format:

● For Successful Response, status=1:

Array

(

[status] => 1

[msg] => Transaction Fetched Successfully

[Transaction_details] => Array

(

[0] => array

(

[id] => 403993715508970248

[status] => failed

[key] => C0Dr8m

[merchantname] => test payu

[txnid] => e1e8a8f4ace8506043e1

[firstname] => John

[lastname] => Moses

[addedon] => 2014-02-04 01:25:38

[bank_name] => Visa Debit Cards (All Banks)

[payment_gateway] => AXIS

[phone] => 9585475883

[email] => y.johnmoses@gmail.com

[amount] => 100.00

[discount] => 0.00

[additional_charges] => 0.00

[productinfo] => CSIIT Conference Registration

[error_code] => E312

[bank_ref_no] => 2000112693

mailto:y.johnmoses@gmail.com

PayU Integration Document - Version 2.14

Page 62

[ibibo_code] => VISA

[mode] => DC

[ip] => 117.206.82.90

[card_no] => 414367XXXXXX0250

[cardtype] => international

[offer_key] =>

[field2] => 403506432293

[udf1] =>

[pg_mid] => TESTIBIBOWEB

[offer_type] =>

[failure_reason] =>

[mer_service_fee] =>

[mer_service_tax] =>

)

[1] => Array

(

[id] => 403993715508970268

[status] => captured

[key] => C0Dr8m

[merchantname] => test payu

[txnid] => 8613914632655135

[firstname] => Hans Wurst

[lastname] =>

[addedon] => 2014-02-04 03:03:06

[bank_name] => Credit Card

[payment_gateway] => HDFC

[phone] =>

[email] => f606f938f64b499aa3fd952d6338aa54@example.com

[amount] => 30.00

[discount] => 0.00

[additional_charges] => 0.00

[productinfo] => 3752946

[error_code] => E000

[bank_ref_no] => 1953525040340351

[ibibo_code] => CC

[mode] => CC

[ip] => 217.6.59.133

[card_no] => 512345XXXXXX2346

[cardtype] => domestic

[offer_key] =>

[field2] => 999999

[udf1] =>

[pg_mid] => 90000970

[offer_type] =>

[failure_reason] =>

[mer_service_fee] => 0.70

[mer_service_tax] => 0.09

)

)

)

● For successful web-service execution, but empty response (i.e. No transactions

found):

Array

(

[status] => 1

[msg] => Transaction Fetched Successfully

[Transaction_details] => Array

mailto:f606f938f64b499aa3fd952d6338aa54@example.com

PayU Integration Document - Version 2.14

Page 63

(

)

)

● Failed case:

In case of invalid input date format, output would be of the following form:

Array

(

[status] => 0

[msg] => Invalid Date Entered. Date format should be yyyy-mm-dd

)

21) get_transaction_info

This API works exactly the same way as get_Transaction_Details API. The only

enhancement is that this API can take input as the exact time in terms of minutes and seconds

also. Output would be in the same format as get_Transaction_Details API output.
Input variable description:

Parameter Description Sample Value

var1 Starting Time (From when the transaction details are

needed) in yyyy-mm-dd hh:mm:ss format

2014-01-12 16:00:00

var2 End Time (Till when the transaction details are

needed) in yyyy-mm-dd hh:mm:ss format

2014-01-12 16:15:00

Web Service Responses:

The status variable would be 1 for successful web-service execution and would be 0 in case

of unsuccessful web-service execution. Output would be returned in the following array

format:
a) For Successful Response, status=1:

Array

(

[status] => 1

[msg] => Transaction Fetched Successfully

[Transaction_details] => Array

(

[0] => array

(

[id] => 403993715508970248

[status] => failed

[key] => C0Dr8m

[merchantname] => test payu

[txnid] => e1e8a8f4ace8506043e1

[firstname] => John

[lastname] => Moses

[addedon] => 2014-02-04 01:25:38

[bank_name] => Visa Debit Cards (All Banks)

[payment_gateway] => AXIS

[phone] => 9585475883

[email] => y.johnmoses@gmail.com

[amount] => 100.00

mailto:y.johnmoses@gmail.com

PayU Integration Document - Version 2.14

Page 64

[discount] => 0.00

[additional_charges] => 0.00

[productinfo] => CSIIT Conference Registration

[error_code] => E312

[bank_ref_no] => 2000112693

[ibibo_code] => VISA

[mode] => DC

[ip] => 117.206.82.90

[card_no] => 414367XXXXXX0250

[cardtype] => international

[offer_key] =>

[field2] => 403506432293

[udf1] =>

[pg_mid] => TESTIBIBOWEB

[offer_type] =>

[failure_reason] =>

[mer_service_fee] =>

[mer_service_tax] =>

)

[1] => Array

(

[id] => 403993715508970268

[status] => captured

[key] => C0Dr8m

[merchantname] => test payu

[txnid] => 8613914632655135

[firstname] => Hans Wurst

[lastname] =>

[addedon] => 2014-02-04 03:03:06

[bank_name] => Credit Card

[payment_gateway] => HDFC

[phone] =>

[email] => f606f938f64b499aa3fd952d6338aa54@example.com

[amount] => 30.00

[discount] => 0.00

[additional_charges] => 0.00

[productinfo] => 3752946

[error_code] => E000

[bank_ref_no] => 1953525040340351

[ibibo_code] => CC

[mode] => CC

[ip] => 217.6.59.133

[card_no] => 512345XXXXXX2346

[cardtype] => domestic

[offer_key] =>

[field2] => 999999

[udf1] =>

[pg_mid] => 90000970

[offer_type] =>

[failure_reason] =>

[mer_service_fee] => 0.70

[mer_service_tax] => 0.09

)

[2] => Array

(

[id] => 403993715508970270

[status] => captured

[key] => C0Dr8m

[merchantname] => test payu

mailto:f606f938f64b499aa3fd952d6338aa54@example.com

PayU Integration Document - Version 2.14

Page 65

[txnid] => 8813914632908201

[firstname] => Hans Wurst

[lastname] =>

[addedon] => 2014-02-04 03:03:30

[bank_name] => Credit Card

[payment_gateway] => HDFC

[phone] =>

[email] => 89163cd22823449d89e6d5cd2346fea3@example.com

[amount] => 30.00

[discount] => 0.00

[additional_charges] => 0.00

[productinfo] => P172

[error_code] => E000

[bank_ref_no] => 261662040340351

[ibibo_code] => CC

[mode] => CC

[ip] => 217.6.59.133

[card_no] => 512345XXXXXX2346

[cardtype] => domestic

[offer_key] =>

[field2] => 999999

[udf1] =>

[pg_mid] => 90000970

[offer_type] =>

[failure_reason] =>

[mer_service_fee] => 0.70

[mer_service_tax] => 0.09

)

)

)

b) For successful web-service execution, but empty response (i.e. No transactions

found):

Array

(

[status] => 1

[msg] => Transaction Fetched Successfully

[Transaction_details] => Array

(

)

)

c) Failed case:

In case of invalid input date format, output would be of the following form:

Array

(

hh:mm:ss

)

[status] => 0

[msg] => Invalid Date Entered. Date format should be yyyy-mm-dd

22) check_isDomestic

This API is used to detect whether a particular bin number is international or domestic. It is

also useful to determine the card’s issuing bank, the card type brand – i.e, Visa, Master etc

mailto:89163cd22823449d89e6d5cd2346fea3@example.com

PayU Integration Document - Version 2.14

Page 66

and also the Card Category – i.e. Credit/Debit etc. Bin number is the first 6 digits of a

Credit/Debit card.
Input Variables description:

Parameter Description Sample Value

var1 Card Number/Bin(First 6 digits of a card) 512345

Web Service Responses:

Case a: If the card is domestic
Array

(

[isDomestic] => Y

[issuingBank] => HDFC

[cardType] => MAST

[cardCategory] => CC

)

Case b: If the card is international
Array

(

[isDomestic] => N

[issuingBank] => UNKNOWN

[cardType] => UNKNOWN

[cardCategory] => CC

)

Here in the output,

● isDomestic = Y signifies that the particular bin is domestic.

● isDomestic = N signifies that the particular bin is International.

● cardType = <value> which can be ['MAST','VISA','MAES','AMEX',

'DINR',’Unknown’]

● [issuingBank] = The issuing bank of the card used for transaction

● [cardCategory] = CC signifies that the particular bin is a Credit Card Bin

● [cardCategory] = DC signifies that the particular bin is a Debit Card Bin

Note: This API would give the output based upon PayU’s bin list which may not be

completely exhaustive.

23) get_settlement_details

This command is used to retrieve Settlement Details for the merchant. The input is the date

for which Settlement Details are required.
Input Variables Description:

Parameter Description Sample Value

var1
Date for which Settlement Data is required - in

YYYY-MM-DD format

2015-08-01

Web Service Responses

● If date format is incorrect

PayU Integration Document - Version 2.14

Page 67

Array

(

[status] => 0

[msg] => Please check date format it should be YYYY-MM-DD

)

● If no data found for the particular date

Array

(

[status] => 1

[msg] => 0 transactions settled on 2015-05-01

[Txn_details] => Array

(

)

)

● If successfully fetched

Array

(

[status] => 1

[msg] => 6565 transactions settled on 2015-08-01

[Txn_details] => Array

(

[0] => Array

(

[payuid] => 204131224

[txnid] => GOFLCF519911416076450

[txndate] => 2014-11-16 00:08:40

[mode] => DC

[amount] => 2580.00

[requestid] => 262698935

[requestdate] => 2015-08-01 17:43:25

[requestaction] => capture

[requestamount] => 186.00

[mer_utr] => CITIH15213701843

[mer_service_fee] => 0.00000

[mer_service_tax] => 0.00000

[mer_net_amount] => 186.00000

[bank_name] => VISA

[issuing_bank] => BOB

)

[1] => Array

(

[payuid] => 206974239

[txnid] => GOFLIae1e11416407957

[txndate] => 2014-11-19 20:09:29

[mode] => CC

[amount] => 33972.00

[requestid] => 262698908

[requestdate] => 2015-08-01 12:45:03

[requestaction] => refund

[requestamount] => 4094.00

[mer_utr] => CITIH15213701843

[mer_service_fee] => 0.00000

[mer_service_tax] => 0.00000

PayU Integration Document - Version 2.14

Page 68

[mer_net_amount] => -4094.00000

[bank_name] => CC

[issuing_bank] => CANA

)

)

)

24) get_merchant_ibibo_codes

This command is used to retrieve all the activated payment options for the merchant. In this API,

var1 needs to be left empty in the input and var2 needs to be kept as 1.

Input Variables Description:

Parameter Description Sample Value

var2 Has to be equal to 1 always 1

Web Service Responses

● If successfully fetched

Array

(

[emi] => Array

(

[EMIK12] => KOTAK - 12 Months

[SBI12] => SBI - 12 months

[EMIHS12] => HSBC - 12 Months

[EMIA12] => AXIS - 12 Months

)

[cashcard] => Array

(

[AMON] => Airtel Money

[ITZC] => ItzCash

)

[netbanking] => Array

(

[HDFB] => HDFC Bank

[AXIB] => AXIS Bank NetBanking

[ICIB] => ICICI Netbanking

[UCOB] => UCO Bank

)

[creditcard] => Array

(

[AMEX] => AMEX Cards

[CC] => Credit Card

[DINR] => Diners

)

[debitcard] => Array

(

[MAST] => MasterCard Debit Cards (All Banks)

[MAES] => Other Maestro Cards

PayU Integration Document - Version 2.14

Page 69

)

)

25) eligibleBinsForEMI

This command is used only when the merchant needs the EMI feature of PayU. In case the merchant

is managing card details on its own website, this API can tell the issuing bank of the card bin.

It also provides the minimum eligible amount for a particular bank.

Input Variables Description (1st Method):

Parameter Description Sample Value

var1 Hardcoded as “bin” Bin

var2 Card bin number (First 6 digits) 434668

Web Service Responses

● If successfully fetched

Array

(

[status] => 1

[msg] => Details fetched successfully

[details] => Array

(

[isEligible] => 1

[bank] => KOTAK

[minAmount] => 500

)

)

● If not found

Array

(

[status] => 1

[msg] => Details fetched successfully

[details] => Array

(

[isEligible] => 0

)

)

Input Variables Description (2nd Method):

Parameter Description Sample Value

var1 Hardcoded as “bin” Bin

var2 Card bin number (First 6 digits) 434668

var3 bankname KOTAK

● If successfully fetched

PayU Integration Document - Version 2.14

Page 70

Array

(

[status] => 1

[msg] => Details fetched successfully

[details] => Array

(

[isEligible] => 1

[bank] => KOTAK

[minAmount] => 500

)

)

● If var3 (input bank name) doesn’t match with the bank name in PayU Database, that

means the bin given in input is of a different bank name

Array

(

[status] => 0

[msg] => Invalid Bin

)

API’s 27-30 are related to PayU’s Store Card Feature

26) get_user_cards

This API is used to fetch all the cards corresponding to the user. In this API, card number and

other sensitive information is not returned.

Input Variables description:

Parameter Description Sample Value

var1 user_credentials (In the format- MerchantKey:UserIdentifier) JQBlG:abc

Web Service Responses:

Case a: Cards are found in the vault.

Response:
Array

(

[status] => 1

[msg] => Cards fetched Succesfully

[user_cards] => Array

(

[745d72e2fd9b7e88824fef4e7ed7dac1fe624b7] => Array

(

[name_on_card] => {name}

[card_name] => nickname but if sent empty then

(cardType****last 4 digits of card) e.g. mastercard****2346

[card_type] => CC(ibibo_code)

[card_token] => 745d72e2fd9b7e88824fef4e7ed7dac1fe624b7

[is_expired] => 1(1 when card is expired , 0 when not)

[card_mode] => CC(card Category)

[card_no] => 412345xxxxxx2356(masked Card Number)

[card_brand] => VISA

[card_bin] => 412345

[expiry_year] => 2017

[expiry_month] => 10

)

)

PayU Integration Document - Version 2.14

Page 71

)

Case b: No cards are found for the user
Array

(

[status] => 0

[msg] => Card not found.

)

27) save_user_card

This API is used for saving a card to the vault. On successful storing of the card, it returns the

cardToken.

Input Variables description:

Parameter Description Sample Value

var1 user_credentials - merchantKey:userId JQBlG:abc

var2 cardName(nickname of the card) My_card

var3 cardMode CC

var4 cardType AMEX

var5 nameOnCard Nitesh Jindal

var6 cardNo 5123456789012345

var7 cardExpMon 9

var8 cardExpYr 2014

Case a: When card is stored successfully

Web Service Responses:
Array

(

[status] => 1

[msg] => Card Stored Successfully.

[cardToken] => 745d72e2fd9b7e88824fef4e7ed7dac1fe624b7

)

Case b: Any of the field is invalid

If card Number is invalid:

Web Service Response:
Array

(

[status] => 0

[msg] => CardNumber is invalid

)

PayU Integration Document - Version 2.14

Page 72

28) edit_user_card

This API is used to edit the details of an existing stored card in the vault. In this case, along

with all the parameters that are required to save to the card, cardToken of the card to edit is

also required to be passed. On successfully editing the card, it returns the cardToken of the

card.

Input Variables description:

Parameter Description Sample Value

var1 User Credentials - MerchantKey:UserId

MerchantName:UserId

JQBlG:abc

var2 cardToken(card token of the card to edit) 745d72e2fd9b7e88824fef4e7ed7dac1f

var3 cardName(nickname of the card) My_card

var4 cardMode CC

var5 cardType AMEX

var6 nameOnCard Nitesh Jindal

var7 cardNo 5123456789012345

var8 cardExpMon 9

var9 cardExpYr 2014

Case a: On successful editing of card

Web Service Response:
Array

(

[status] => 1

[msg] => {cardName} Edited Successfully.

[cardToken] => 745d72e2fd9b7e88824fef4e7ed7dac1fe624b74

)

Case b: If the wrong card token is given to edit

Web Service Response:
Array

(

[status] => 0

[msg] => Card not found to edit

)

29) delete_user_card

This API is used to delete a card.

Input Variables description:

Parameter Description Sample Value

var1 user_credentials - merchantKey:userId JQBlG:abc

PayU Integration Document - Version 2.14

Page 73

 MerchantName:UserId

var2 cardToken (cardtoken of the card to delete) 745d72e2fd9b7e88824fef4e7ed

Web Service Responses:

Case a: On successful deletion of card
Array

(

[status] => 1

[msg] => {cardName} deleted successfully

)

Case b: on failure of deletion

Array

(

[status] => 0

[msg] => error reason

)

30) clemi_pincode_check

This API is used to check the eligibility of given pincode for a PayU Monedo Loan
Application. The pincode to be checked is given as input and its eligibility is
accordingly returned in the response. The response parameters are eligibility
status [status] and an accompanying message [msg].
The status is returned as ‘1’ in case of eligible pincode, ‘-1’ in case of ineligible
(but valid) pincode and ‘0’ in case of any errors.
Input Variables Description:

Web Service Responses:

• if pincode is invalid

Array

(

[status] => 0

[msg] => Pincode is invalid

)

• if pincode is not eligible

Array

(

[status] => -1

[msg] => Pincode is not eligible

)

• if pincode is eligible

PayU Integration Document - Version 2.14

Page 74

Array

(

[status] => 1

[msg] => Pincode is eligible

)

• if service is unavailable due to internal network or processing error

Array

(

[status] => 0

[msg] => Internal Service Error

)

31) proofOfDeliveryInformation

This API is used to share the proof of delivery of goods/services to the customer.
This is required for Bajaj Finserv & HDFC Debit Card EMI options. The pincode to
be checked is given as input and its eligibility is accordingly returned in the
response. The response parameters are eligibility status [status] and an
accompanying message [msg].
The status is returned as ‘1’ in case of the information has been successfully
captured in our system, in all other cases, status as ‘0’ or timeout this API needs to
be called again.

Input Variables Description:

Parameter Description Comments

var1

PayUID- Will be returned in the response of the
transaction

var2

AWBno- Tracking number of the shipment in case of
goods delivery, "NA" in case of services

var3

CourierName- Name of the delivery partner in case of
goods delivery & name of the merchant in case of services

var4

DeliveryAddress- Deliveryaddress in case of goods
delivery & customer address in case of services

var5

DeliveryDateTime- Date & time when shipment was
handed over to the customer in case of goods & date and
time when service was given to the customer in case of

services

Date in YYYY-MM-

DDTHH:MM:SS format, for
ex. 2006-01-02T15:04:05

var6 Invoicedate- Self explanatory Date in DDMMYYYY format

var7 InvoiceNumber- Self explanatory

var8 InvoiceAmount- Self explanatory

var9

Manufacturer- Manufacturer of the equipment in case of
goods & that party, not the marketplaces, who is giving

services in case of services

var10 OrderNo- Self explanatory

var11

ProductCategory- Table given below for different kinds of
categories

var12 Productdescription- Details of product purchased/services

PayU Integration Document - Version 2.14

Page 75

 availed by the customer, like Model Name in case of the
goods & details of services of the services

var13

ReceiversName- Name of the person to whom product
was delivered in case of goods and customer name in

case of services

var14

SerialNumber- Serial number of the product, like IMEI in
case of mobiles & Policy Number in case of insurance

var15

SellerName- Self explanatory, this will not be name of the
marketplace in case of marketplace models

ProductCateg
ory

Description

Consum
er
Durable

White goods example: mobile phone, refrigerator, Air
conditioner, television etc

Lifestyle

Lifestyle products example: premium Furniture, high-end
Watches, Cameras, Fitness equipment, etc.

Life care

Life care finance example: Dental surgeries, Cosmetic Surgeries,
Medical Treatments like Laparoscopic, Weight loss surgeries, IVF,

Eye care, Stem cells, Hair transplants, etc.

Apparels

Apparels – Branded Clothes and Accessories example:
Foot-ware, Eyewear, Handbags, Leather
accessories

Travel Travel & Holidays - Domestic & International Travel financing

Art and

Antiques

Art and Antiques such as Paintings by renowned artist sold through
listed art galleries

Web Service Responses:

• When the information has successfully been captured in our system

Array

{

"status": 1,

"msg": "INVOICE ADDED SUCCESSFULLY."

}

• In case of failure

Array

{

"status": 0,

"msg": "Some error occured"

"description":""

}

